
Rethinking Safe Consistency
in Distributed Object-Oriented Programming

MIRKO KÖHLER, Technische Universität Darmstadt, Germany

NAFISE ESKANDANI, Technische Universität Darmstadt, Germany

PASCAL WEISENBURGER, Technische Universität Darmstadt, Germany

ALESSANDRO MARGARA, Politecnico di Milano, Italy

GUIDO SALVANESCHI, Technische Universität Darmstadt, Germany

Large scale distributed systems require to embrace the trade off between consistency and availability, accepting

lower levels of consistency to guarantee higher availability. Existing programming languages are, however,

agnostic to this compromise, resulting in consistency guarantees that are the same for the whole application

and are implicitly adopted from the middleware or hardcoded in configuration files.

In this paper, we propose to integrate availability in the design of an object-oriented language, allowing

developers to specify different consistency and isolation constraints in the same application at the granularity

of single objects. We investigate how consistency levels interact with object structure and define a type system

that preserves correct program behavior. Our evaluation shows that our solution performs efficiently and

improves the design of distributed applications.

1 INTRODUCTION
Replication is fundamental in large-scale distributed systems to improve data availability and data

access latency. By replicating data at multiple sites, distributed components can interact with the

closest (e.g., local) replica without incurring the cost of remote data access. However, synchronizing

replicas to ensure a globally consistent view implies onerous performance costs that can hamper

rather than improve availability and latency. For this reason, weakly consistent models have been

widely adopted to limit synchronization overhead at the expense of correctness [38].

Still, some operations, for instance those related to security, monetary transactions, and ac-

countability, have higher correctness requirements and need strong consistency. One option is to

build the application on top of a highly consistent data store and accept the overhead of strong

consistency. Alternatively, developers can exploit weakly consistent data stores and implement

strong consistency manually for some operations. Because of the interaction of data at different

consistency levels, however, this is a complex and error-prone task. To address these issues, recent

research investigates APIs for data stores that enable setting different consistency models for

different data, offering high availability and low latency when possible, and strong consistency

when needed. These solutions are based on various approaches, including embedded DSLs for

transactions [29], specialized ADTs that support different consistency levels [19, 25] and function

preconditions and invariants [6, 20, 34].

We propose ConSysT, a language where consistency and availability are integrated with the object-
oriented programming model. We enable mixing objects with different availability characteristics

and investigate how availability interacts with object abstractions, such as fields, references, object

nesting, encapsulation, and mutable state.

Authors’ addresses: Mirko Köhler, Technische Universität Darmstadt, Darmstadt, Germany, koehler@cs.tu-darmstadt.

de; Nafise Eskandani, Technische Universität Darmstadt, Darmstadt, Germany, n.eskandani@cs.tu-darmstadt.de; Pascal

Weisenburger, Technische Universität Darmstadt, Darmstadt, Germany, weisenburger@cs.tu-darmstadt.de; Alessandro

Margara, Politecnico di Milano, Milano, Italy, alessandro.margara@polimi.it; Guido Salvaneschi, Technische Universität

Darmstadt, Darmstadt, Germany, salvaneschi@cs.tu-darmstadt.de.

2020. XXXX-XXXX/2020/3-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: March 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 M. Köhler, N. Eskandani, P. Weisenburger, A. Margara, and G. Salvaneschi

ConSysT’s integration of consistency and object-oriented programming builds on two major

insights. (i) In line with the recent research on distributed systems [5], ConSysT considers consistency
and isolation concerns together. (Single-object) consistency constrains how updates are propagated

across replicas and become visible to the other components of the distributed application. Isolation

determines how concurrent invocations of methods (blocks of operations) on replicated objects

interleave. Consistency and isolation together concur in determining data availability and access

latency. (ii) ConSysT adopts a type system that ensures that the program does not violate the

correctness constraints set by the developer to enable integrating availability and object-oriented

programming in a safe way. Our evaluation shows that ConSysT enables developers to pay a

performance overhead only where consistency is needed. It improves the design of distributed

applications and prevents consistency programming errors. In summary, this paper makes the

following contributions:

• We propose ConSysT, a distributed language that combines multiple availability levels with

object-oriented programming, enabling mixing objects with different consistency and isolation

guarantees.

• We design a type system that ensures that consistency constraints are not violated due to unsafe

mixing. A core calculus for ConSysT and the correctness proofs for the type system are in the

supplementary material.

• We provide a reference implementation of ConSysT as a Java extension and a middleware for

replicated objects.

• We evaluate ConSysTwith case studies and benchmarks, showing that it improves software design

and increases performance over traditional coarse-grained consistency selection mechanisms.

The paper is structured as follows. Section 2 outlines the context of our work. Section 3 presents

the design of ConSysT and Section 4 introduces its formalization. Section 5 describes the implemen-

tation. Section 6 presents the evaluation. Section 7 discusses related work and Section 8 concludes.

2 CONSISTENCY AND ISOLATION
This section discusses consistency and isolation in distributed systems using TicketShop, a dis-

tributed shop application for concert tickets, as a running example. In TicketShop, the objects

modeling concerts are replicated to the machines of various local retailers enabling them to retrieve

and display data related to concerts with low delay whenever possible.

Figure 1 shows part of the implementation of TicketShop in Java (Figure 1a) and in our ConSysT
language (Figure 1b). For now, we refer to the Java implementation, while the following sections will

introduce the features of ConSysT. Figure 1a defines a Band class that, for simplicity, only includes a

bandName field with the name of the band, a ConcertHall class, with a maxAudience field indicating

the capacity of the room, and a Counter with an integer value as well as an inc() method to

increment the value by one. A Concert has a date, a hall, a band, and the number of tickets sold so

far. Method buyTicket lets a customer buy a ticket as long as there are tickets available, that is, if

the number of sold tickets is lower than the capacity of the concert hall. If that is the case, then

the number of sold tickets is increased by one and a new ticket is returned. Otherwise the method

returns no ticket.

2.1 Issues with Replicated Objects
Now assume that Band, ConcertHall, Counter, and Concert objects are replicated at multiple ma-

chines, which can interact with their copies of the objects simultaneously. This simple application

is enough to demonstrate pitfalls of working with replicated data, as explained in the following.

, Vol. 1, No. 1, Article . Publication date: March 2020.

Rethinking Safe Consistency in Distributed Object-Oriented Programming 3

1 class Band {

2 String bandName;

3 }

4 class ConcertHall {

5 int maxAudience;

6 }

7 class Counter {

8 int value = 0;

9 void inc() { value ++; }

10 }

11 class Concert {

12 Date date;

13 ConcertHall hall;

14 Band band;

15 Counter soldTickets;

16

17 int getSoldTickets () {

18 return soldTickets.value;

19 }

20 Optional <Ticket > buyTicket () {

21 if (hall.maxAudience >

↪→ getSoldTickets ()) {

22 soldTickets.inc();

23 return Optional.of(new Ticket ());

24 } else {

25 return Optional.empty();

26 }}}

(a) Java implementation.

1 class Band {

2 String bandName;

3 }

4 class ConcertHall {

5 int maxAudience;

6 }

7 class Counter {

8 int value = 0;

9 void inc() { value ++; }

10 }

11 class Concert {

12 Date date;

13 Ref <@Low ConcertHall > hall;

14 Ref <@High Band > band;

15 Ref <@Low Counter > soldTickets;

16

17 int getSoldTickets () {

18 return soldTickets.ref.value;

19 }

20 Optional <Ticket > buyTicket () {

21 if (hall.ref.maxAudience >

↪→ getSoldTickets ()) {

22 soldTickets.ref.inc();

23 return Optional.of(new Ticket ());

24 } else {

25 return Optional.empty();

26 }}}

(b) ConSysT implementation.

Fig. 1. TicketShop: example of a distributed application with replicated objects.

Fine-Grained Consistency. If the number of tickets sold for a concert (soldTickets) is replicated

to multiple processes, the application might diverge from the expected behavior if different replicas

can see the operations performed on soldTickets in different orders. For example, assume that

only one ticket for a concert is left, but there are two users that buy a ticket at two different replicas

at the same time. The system has to ensure that only one ticket is sold, and that all replicas agree

on which user gets the ticket, i.e., who tries to buy the ticket first. In other words, the program

requires (the order of operations performed on) soldTickets to be consistent across all replicas.
However, such strong consistency is not needed for all replicated objects. For example, in the

case of the band field, it is acceptable if a change to the band is not propagated to other replicas

immediately. It is only required that it is propagated eventually. Unfortunately, if the consistency
level is hardcoded in the datastore, to ensure correctness, programmers need to adopt the highest

consistency level for all values, facing significant performance costs also for values that could be

replicated with a lower consistency level.

Isolation. Even under the assumption that soldTickets is consistent, method buyTicket() remains

problematic. There is no guarantee that the value returned by getSoldTickets() is still up-to-date

when soldTickets.inc() is called. Other processes can cause concurrent changes of soldTickets

between these two calls. The example shows that the application does not behave correctly without

some form of isolation of method invocations, which defines how concurrent invocations can

interleave with each other. In our example, method buyTicket() executes correctly only if no

, Vol. 1, No. 1, Article . Publication date: March 2020.

4 M. Köhler, N. Eskandani, P. Weisenburger, A. Margara, and G. Salvaneschi

Replicated Objects

A

B

Application

Process 2

Operations

Replicated Objects

A

B

Application

Process 1

Coordination

Operations

Fig. 2. System model.

concurrent update to soldTickets is allowed. Also, the example shows that consistency alone is

hardly useful to define correct application and it is only meaningful to programmers when combined

with some form of isolation.

Consistency Leaks. The buyTicket() method presents yet another potential source of errors in

the comparison between getSoldTickets() and maxAudience. As described above, the soldTickets

value has to be consistent across all replicas, but such requirement might not hold for maxAudience,

i.e., maxAudience can differ between replicas, possibly allowing some of them to sell tickets while

others cannot. In fact, mixing a strongly consistent value like getSoldTickets() and a weakly

consistent value like maxAudience lowers the guarantees that strong values provide.

2.2 Executive Summary
In summary, to address the issues above, we need:

(1) A mechanism to define consistency at the granularity of individual objects to ensure correctness

for strong consistent objects and accept lower guarantees to enhance availability for weak

consistent objects.

(2) As strong consistency provides little guarantees in practice if not combined with some form

of isolation, we need a mechanism to specify isolation of multiple operations performed on

replicated objects.

(3) Since objects with different consistency guarantees can coexist, the system has to ensure

that strong guarantees are not violated by wrongfully mixing data with different levels of

consistency.

In the rest of the paper, we propose a language that supports replicated objects with different

consistency and isolation properties, and a type system that prevents their violation.

3 CONSYST REPLICATED OBJECTS
This section presents the design of ConSysT by reimplementing the TicketShop example of Section 2.

We present the system model in Section 3.1, and then we incrementally introduce the features of

ConSysT: replicated objects (Section 3.2), availability levels (Section 3.3) and the availability type

system (Section 3.4).

3.1 System Model
Figure 2 shows an overview of our system model. Distributed applications run on multiple processes,
which are (logically) single-threaded and can be deployed on different machines. Applications create

and access replicated objects. Conceptually, each process keeps its own replicas of all replicated

objects in the system. Applications interact with replicated objects by performing operations: method

invocations, field accesses (reads) and modifications (writes). Each replicated object has associated

consistency and isolation guarantees. When an application performs operations involving one

or more replicated objects, the system runs a coordination phase that depends on the specific

guarantees of the objects.

, Vol. 1, No. 1, Article . Publication date: March 2020.

Rethinking Safe Consistency in Distributed Object-Oriented Programming 5

3.2 Replicated Objects
ConSysT introduces a replicatemethod to create new replicated objects. For example, the following

code snippet shows how the TicketShop application creates a new replicated object of type Concert:

1 Ref <Band > band = ...

2 Ref <ConcertHall > hall = ...

3 Ref <Concert > concert1 = replicate("concert1",

4 new Concert(date("2019 -09 -25"), hall , band));

Method replicate returns a reference Ref to the new replicated object. Other processes can reference

the object by its global name "concert1", specified at creation time.

An overload of replicate creates replicated objects without a name. Such objects can only be

referenced through fields of other replicated objects. For example, the following code snippet creates

a new counter whenever a Concert object is instantiated. This counter can only be referenced

through the field soldTickets in a replicated Concert object.

1 class Concert {

2 Ref <Counter > soldTickets =

3 replicate(new Counter (0));

4 ... }

Replicating an object creates a deep copy of the original object, ensuring referential integrity.

References to replicated objects are preserved.

The lookup method performs a lookup of an existing replicated object by its global name. For

example, a client can reference an existing concert by looking up its name:

Ref <Concert > concert1 = lookup("concert1");

The reference points to the replica that is located on the process. Applications can perform opera-

tions – method invocation, field access, field modification – on replicated objects as on normal Java

objects. For example, a client can buy a ticket by invoking buyTicket() on the replicated Concert

object:

Optional <Ticket > t = concert1.ref.buyTicket ();

The interaction with a replicated object is always denoted by ref. In this way, ConSysT makes

performing operations on replicated objects explicit and avoids distribution transparency [12]. As

in Java, method invocations are synchronous. Accessing a field is similar to a method invocation.

The date field of the concert can be accessed with ref as well:

1 Date d = concert1.ref.date;

2 concert1.ref.date = date("2019 -09 -28");

The result of a field access or method call is a copy of the value in the replicated object. Mutating

object d of the code snippet does not mutate field date stored in the replicated object concert1.

The same holds for arguments in method invocations, which are copied before the method is

executed. As before, references to replicated objects are preserved. Copy semantics ensure that

replicated objects do not hold references to objects that are local to some process, while they can

hold references to other replicated objects.

3.3 Availability of Replicated Objects
ConSysT associates each replicated object with an availability level, and supports mixing replicated

objects with different availability levels. For simplicity, in the rest of this section we consider

two availability levels, High and Low as representative of two classes: High for levels that do not

, Vol. 1, No. 1, Article . Publication date: March 2020.

6 M. Köhler, N. Eskandani, P. Weisenburger, A. Margara, and G. Salvaneschi

require blocking coordination among processes; Low requires blocking coordination to implement

consistency and isolation.

For example, aHigh level could provide eventual consistency with Item Cut Isolation [5]. Eventual

consistency applies changes locally (with no blocking coordination) and eventually propagates

them to all replicas. It resolves conflicts with some deterministic strategy to ensure convergence.

Item Cut Isolation guarantees that when an operation reads a value multiple times, all reads return

the same value. It can be implemented without blocking coordination by locally caching read data

until the operation is finished.

A Low availability level could provide sequential consistency with serializable isolation, which

together guarantee that all replicas observe the effects of operations as if they were executed in

some serial order without interleaving. Sequential consistency requires some form of coordination,

e.g., a centralized component to serialize all accesses to a given object or a consensus algorithm,

such as Paxos [22]. Serializability can be achieved using distributed locking protocols such as

two-phase locking [16], which prevent concurrent modifications of replicated objects, or using

optimistic concurrency control, which restores a previous version of the data in the case concurrent

operations corrupt the state.

3.3.1 Availability Levels and Object Structure. ConSysT guarantees that data with different levels is

not combined in a way that violates the respective availability guarantees. ConSysT is oblivious of
the specific semantics of each level. From the perspective of the programming model, the system

only needs to know the partial order relation that defines when an availability level l1 is stronger
than another level l2, i.e., that l1 offers at least all the guarantees of l2 (and possibly more). In general,

availability levels form a lattice. We define the availability level Local (for objects that are not

replicated) and Inconsistent as the ⊥ and ⊤ of the lattice. Lattices for single-object consistency

models have been given by Viotti and Vukolić [37], and for transactional in single-object consistency

by Bailis et al. [5].

In ConSysT, the availability level of a replicated object is defined at object creation. The following

code fragment shows the creation of a new replicated Concert object with a High availability level.

1 <@High Concert >replicate("c1",

2 new Concert(date("2019 -09 -25"), hall , band));

The availability level can be also inferred from the type of the reference to the replicated object.

The following code snippet exemplifies how availability shows up in the type of a replicated object.

1 Ref <@High Concert > concert1 = replicate("c1",

2 new Concert(date("2019 -09 -25"), hall , band));

Upon lookup, the availability level of the reference has to match the level of the replicated object:

1 Ref <@High Concert > concert1 = lookup("c1");

In this case, the ConSysT runtime checks dynamically if the availability levels of references to the

same replicated objects match and throws an error in case of a mismatch.

ConSysT replicated objects can hold fields that are Refs to other replicated objects and hence can

have different availability types. For simplicity, the availability level of non-Ref fields of a replicated

object is the same as the availability level of the object that holds the field. The rationale of this

approach is that fields that are not Refs themselves are local to the object and one needs to access

them through a remote reference of the containing object.

Figure 1b reports the definition of the Concert class using availability type annotations. To ensure

that the field soldTickets is strongly consistent (i.e. low available), as required in the ticket shop

application, the developer annotates the reference to soldTickets with the Low availability level

(Line 15). The field band has a High availability level to prevent incurring latency overhead. hall

, Vol. 1, No. 1, Article . Publication date: March 2020.

Rethinking Safe Consistency in Distributed Object-Oriented Programming 7

cannot be High as will be explained in Section 3.4.2. date inherits the same availability level that is

used to instantiate the Concert object.

In summary, by explicitly defining the availability level, ConSysT ensures that the guarantees for

the annotated objects are satisfied. This approach solves the Fine-grained consistency problem from

Section 2.1: the programmer can make accurate decisions about which data have weak or strong

consistency levels.

3.3.2 Operations on Replicated Objects. ConSysT classifies operations based on the availability of

the receiving object. High operations and Low operations are performed on High and Low replicated

objects, respectively. In the following example, the operation that updates the field date is High as

concert1 is a reference to a High object:

1 Ref <@High Concert > concert1 = ...

2 concert1.ref.date = date("2019 -09 -28");

In the rest, without loss of generality, High operations are not isolated whereas Low operations

are executed with serializable isolation. For example, method buyTicket() has to be executed in

isolation to prevent concurrency bugs. This is accomplished by invoking it on a Low object:

1 Ref <@Low Concert > concert = ...

2 concert.ref.buyTicket ();

Note that the isolation level of a method always depends on the receiver object. Low operations

that occur during the execution of a High method run at the Low availability level, which provides

stronger guarantees. Our approach to isolation is similar to the synchronize keyword in Java where

an object manages its own concurrent modifications. With the design above, we solve the isolation

problem from Section 2.1 by providing isolation guarantees together with consistency guarantees

for objects.

References to replicated objects (annotated with their availability level) can be passed as method

parameters or return values. To demonstrate, consider, the method copyDate below, which sets

the date field to the date of another (High available) concert. The availability annotation ensures

that only references that have at least the consistency guarantees of the availability level High are

passed as method parameter.

1 class Concert {

2 Date date;

3 void copyDate(Ref <@High Concert > concert) {

4 date = concert.ref.date;

5 } ... }

3.4 Availability Type System
Availability levels in ConSysT not only define runtime semantics, but are also tracked by the type

system as availability types. Availability types are pairs C@l where l is the availability level and C
is a data type, e.g., a class. We use the notation Ref<@l C> to define concrete availability type in

ConSysT. For example, Ref<@Low Concert> is a type representing a replicated Concert with the Low

availability level.

The ConSysT type system tracks the availability types of replicated objects and ensures that

data at different availability levels is not mixed mindlessly, as unconstrained mixing can violate

consistency or isolation guarantees and lead to inconsistent replicas.

In particular, ConSysT employs an information-flow type system to ensure that no information

from High available data sources leaks into Low available data sinks (i.e., variables, fields, method

parameters). Leakage from High sources to Low sinks occurs (a) when passing High values into Low

, Vol. 1, No. 1, Article . Publication date: March 2020.

8 M. Köhler, N. Eskandani, P. Weisenburger, A. Margara, and G. Salvaneschi

data sinks either by assignment or as method parameter or return value, (b) when the control flow of

a program is changed such that Low operations are affected by conditions on High data (also called

implicit flows), (c) when instantiating objects at an availability level that would permit the leakage,

and (d) when Low available data is accessed through High references. As the information-flow type

system rejects all flow that can reduce the consistency guarantees specified by the programmer,

it solves the consistency leaks problem (Section 2.1). Historically, information-flow type systems

are used to prevent leakage of sensitive data [14], but the concept was recently also employed for

consistency models [29].

3.4.1 Violation of Guarantees Through Explicit Information-Flow. In the following example, a High
object is assigned to a Low field. Method sellOut in class Concert (Line 4) sells all available tickets

for a concert by setting the field value of soldTickets to the maximum audience size of the hall. In

the following code snippet, this is achieved with an assignment from maxAudience to value (Line 5).

1 class Concert {

2 Ref <@High ConcertHall > hall;

3 Ref <@Low Counter > soldTickets;

4 void sellOut () {

5 soldTickets.ref.value = hall.ref.maxAudience;

6 } ... }

Without the intervention of the type system, the program above might lead to an undesired state.

For instance, assume that Process A reduces the size of the concert hall and then sells all tickets:

1 Ref <@Low Concert > concert = ...

2 Ref <@High ConcertHall > hall = concert.ref.hall;

3 hall.ref.maxAudience -= 100;

4 concert.ref.sellOut ();

When another Process B observes the invocation of sellOut, it may not have observed the as-

signment to maxAudience yet. In this case, value has the same value on Process A and Process B,

but maxAudience is 100 lower for Process A. The intention of invoking sellOut is that a process is

expected to stop selling tickets. But due to an unexpected order of operations, Process B can still

sell 100 tickets.

To summarize, this unexpected behavior occurs because in sellOut there is an information-flow

from the High available field maxAudience to the Low available field value, and there is no guarantee

that the assignment to the maxAudience field takes place before the invocation of sellOut. For this

reason, the ConSysT type systems rejects programs that contain assignments from high to low

available objects.

3.4.2 Restricting Implicit Information-Flow. In addition to preventing direct data flow from High to

Low available data, the type system also prohibits implicit information-flow. Consider the following

code snippet, where Concert is defined such that soldTickets is High, and the other fields are Low:
1 class Concert {

2 Ref <@High ConcertHall > hall;

3 Ref <@Low Counter > soldTickets;

4 Optional <Ticket > buyTicket () {

5 if (hall.ref.maxAudience > getSoldTickets ()) {

6 soldTickets.ref.inc();

7 return Optional.of(new Ticket ());

8 } else ...

9 } ... }

, Vol. 1, No. 1, Article . Publication date: March 2020.

Rethinking Safe Consistency in Distributed Object-Oriented Programming 9

With this definition, the method buyTicket has a problematic implicit information-flow from the

High reference hall to the Low reference soldTickets. The Low operation soldTickets.ref.inc()

is called in the body of an if-statement with a condition that accesses the High value maxAudience.

Hence, the invocation of inc() depends on a High value, which is an illegal information-flow and

thus prohibited by the type system. In Figure 1b, hall is already defined as Low, which does not

result in an illegal information-flow.

3.4.3 Restricting Object Creation. In ConSysT, the availability level of a field without an availability

type is the same as the level of the containing object. For example, Concert has a field date: when

Concert is instantiated as a High object, date is High as well.

1 class Concert {

2 Date date;

3 Ref <@High ConcertHall > hall;

4 ... }

The ConSysT type system considers whether the availability level of fields can violate the

information-flow depending on the availability level of the containing object. In particular, the

type system prevents the creation of replicated objects if their availability level leads to an illegal

information-flow. For example, the method copyDate below sets the date of a concert to the date of

another (High) concert:

1 class Concert {

2 Date date;

3 void copyDate(Ref <@High Concert > concert) {

4 date = concert.ref.date;

5 } ... }

If Concert is instantiated as a Low object, the date field is Low as well. In this case, copyDate assigns

the High value concert.ref.date to the Low field date, which is an illegal information-flow from

High to Low. For this reason, ConSysT disallows creating replicated objects with an availability level

such that the object is not compatible with the execution of any of its methods.

3.4.4 Restricting Information-Flow for References. The availability level of references that are

accessed as a field of another replicated object o can not have stronger consistency guarantees than

o. To clarify look at the following code snippet. The Low field soldTickets is accessed through a

High reference to a concert.

1 Ref <@High Concert > concert = ...

2 Ref <@High Counter > counter =

3 concert.ref.soldTickets;

Even though the field is declared as Low, concert.ref.soldTickets returns a High reference,

because concert is High. If that would not be the case, then the following anomaly could happen.

Assume that Process A assigns a new counter to soldTickets.

concert.ref.soldTickets = ...

This assignment is a High operation, and such may not be visible to Process B that reads soldTicket

afterwards. Process B would then have an outdated reference to the counter of concert, which

violates the consistency guarantees of Low availability. ConSysT captures this in the type system by

setting the availability level of a field access to the highest level between the declared availability

level of the field and the level of the receiver object.

, Vol. 1, No. 1, Article . Publication date: March 2020.

10 M. Köhler, N. Eskandani, P. Weisenburger, A. Margara, and G. Salvaneschi

Discussion. In ConSysT, availability levels are attached to objects. An alternative design is to

associate availability to classes: The availability of an object follows directly from its class. Although

ConSysT enables to instantiate the same class with different availability levels, ConSysT’s approach
does not hinder reasoning about the availability level of an object, as the level of an object is

reflected in its type and developers can reason about it at compile time. Additionally, annotating

objects improves flexibility because each object can be assigned an availability level individually.

This avoids code duplication: In case availablity levels are associated to classes, implementing a

Counter (as in Figure 1) would require to implement both a HighCounter class and a LowCounter

class.

3.5 Handling Failures
In distributed system, network partitions may occur anytime, e.g., due to node or network failures.

Low operations require blocking coordination among nodes and cannot complete in case of network

partitions because some nodes are not reachable. High operations, on the other hand, only need

access to the local replica and defer coordination, thus High operations are not blocked by network

partitions.

ConSysT provides different approaches to notify developers about failures of High and Low opera-

tions. As Low operations can block until the synchronous coordination among replicas completes,

ConSysT provides (optional) timeouts. The process can either continue waiting or can relinquish the

guarantees of Low available objects and perform the operation on the local replica. In the language,

timeouts result in exceptions which can only occur when accessing replicated objects via refs

(Section 3.1).

High operations, instead, are not directly affected by network partitions – coordination is

asynchronous, i.e., non-blocking. Performing an operation on a High object never results in a

timeout. Yet, in ConSysT, developers can manually synchronize High objects, leading to a timeout

exceptions visible to the developer, just as with Low operations. Thus, also in the case of High
available objects, developers may introduce different failure handling strategies on top of manual

synchronization.

As failures can occur any time, it is possible that operations are only partially applied, i.e., an

operation has only been applied on some replicas, or only a part of a nested operation has been

applied on one replica (due to network partitions). Whether partial application of an operation is

allowed depends on the availability level. For High objects, operations are allowed to be partially

applied, as High availability allows inconsistencies between replicas. For Low objects, operations

are not allowed to be partially applied. In this case, too, the impossibility of coordination leads to

blocking, which is handled using timeouts, as discussed above.

4 FORMALIZATION
We provide a core calculus for ConSysT based on Featherweight Java [21], featuring mutable fields.

Objects are in (replicated) stores and are represented as references in the language. Processes hold

a replica and communicate by synchronizing replicas. We equip the calculus with a type system

that tracks availability levels and prove its correctness. In the notation, overbars specify sequences,

and subscripts project elements of a sequence, e.g., f is a sequence of field identifiers and fi is its
i-th element. Proof sketches are inline, larger proofs are in Appendix ??.

4.1 Syntax
The syntax of the core calculus is in Figure 3. A programs P in the calculus consists of a sequence of

expressions e1, ..., en , where expressions define processes running in parallel. Expressions contain

, Vol. 1, No. 1, Article . Publication date: March 2020.

Rethinking Safe Consistency in Distributed Object-Oriented Programming 11

P ::= e1, ..., en (Programs)

Loc ∋ ρ (Locations)

Expr ∋ e ::= x
| let x = e1 in e2
| ref<C@l>(ρ)
| new C@l(e) at ρ
| e0.f
| e0.f = e
| e0.m(e)

Value ∋ v ::= ref<C@l>(ρ)

C : C→ D

D ::= class C1 extends C2 {F ; M}
F ::= α f | inferred C f
M ::= β m(α x){ return e }

ALevel ∋ l ::= Local | Inconsistent | ...
α, β,γ ::= C@l

Fig. 3. Syntax of the core calculus.

C(C) = class C extends C′ {...}

C <:D C′
TSub-Cls

C <:D C′
TSub-Refl

C <:D C′ C′ <:D C′′

C <:D C′′
TSub-Trans

C1 <:D C2 l1 ⊑ l2

C1@l1 <: C2@l2
ASub

Fig. 4. Subtyping.

standard local variable identifiers x, and let bindings. f ranges over identifiers for fields, ρ ranges over
locations of replicated objects, m ranges over methods, and C ranges over class names. ref<C@l>(ρ)
defines a reference to a (replicated) object at store location ρ ∈ Loc. This captures the method

lookup in ConSysT. Each replica has the same object at the same store location. The location is the

unique name of the object. The constructor invocation new C@l(e) at ρ creates a new object with

availability level l. In the case of l = Local a new local object is created, otherwise it creates a

replicated object. The latter case captures the method replicate in ConSysT. Further, the language
supports field access, field modification and method invocation. The only value are references.

A globally available class table C maps class identifiers C to definitions. Class definitions D have

a name C1, a super class C2, and contain a sequence of field and method declarations F ; M . A field

declaration F is a reference with an availability level α f. Alternatively, the availability level for

inferred C is inferred from the containing object. MethodsM take one parameter x and return the

value of an expression e . Return values and the parameter type are both labeled with availability

levels. The empty class Object is the top of the class hierarchy. We assume that there is no field

overriding. Methods on the other hands can be overridden.

Labels l define availability levels. Availability types α are class identifiers C labeled with an

availability level l, which corresponds to the notation Ref<@l C> used in ConSysT. Non-replicated
objects have the special availability level Local – the bottom of the availability lattice.

4.2 Type system
We define an information-flow type system for the core calculus that tracks the availability guaran-

tees of program data. The type system is inspired by type systems for object-oriented languages

with information-flow [18].

Subtyping and global type context. The subtyping relation is in Figure 4. For classes, C <:D C′

is, as usual, according to the class hierarchy. We assume that <:D is anti-symmetric and the class

hierarchy is acyclic. Subtyping for availability types is defined as α <: α ′, which requires that

the classes are subtypes and that the availability levels are ordered by ⊑We define a type context

Σ : Loc 7→ α that defines an availability type for each location of the replicated store. The context

, Vol. 1, No. 1, Article . Publication date: March 2020.

12 M. Köhler, N. Eskandani, P. Weisenburger, A. Margara, and G. Salvaneschi

fields(Object, l) = •
A-Fields-1

fields(C′, l) = β ′ f′

C(C) = class C extends C′ {F ; M}
if Fi = α f then βi = α

if Fi = inferred C′′f then βi = C′′@l

fields(C, l) = β ′ f′, β f
A-Fields-2

fields(C, l) = α f αi fi = β f′

typeOfField(C, l, f′) = β
A-FieldType

C(C) = class C extends C′ {F ; M}
β m(α x){ return e } ∈ M

method(C, m) = β m(α x){ return e }
A-Method-1

C(C) = class C extends C′ {F ; M}
β m(α x){ return e } < M

method(C′, m) = β m(α x){ return e }

method(C, m) = β m(α x){ return e }
A-Method-2

Fig. 5. Auxiliary definitions for classes.

Σ ⊢ M is ok in C for l
Σ ⊢ C(C′) is ok for l l , Local

Σ ⊢ class C extends C′ {F ; M} is ok for l
T-Class-1

Σ ⊢ M is ok in C for Inconsistent
Σ ⊢ C(C′) is ok for Local

Σ ⊢ class C extends C′ {F ; M} is ok for Local
T-Class-2

Σ; •, x 7→ α, this 7→ C@l ⊢ e : γ γ <: β C(C) = class C extends C′ {...}
if method(C′, m) = β ′ m(α ′ x′){ return ... } then α ′ = α ∧ β ′ = β

Σ ⊢ β m(α x){ return e } is ok in C for l
T-Method

Fig. 6. Method and class typing.

is part of the program definition and statically defines for each location ρ the class and availability

level of an object at ρ.

Auxiliary definitions. Figure 5 shows the auxiliary definitions for the static semantics. fields(C, l)
returns a sequence of all field declarations F for an object of class C instantiated with availability

level l. fields differentiates between the two kinds of field definitions: If F = β f, then fields
just uses the declared type β for field f. Otherwise F = inferred C f, in which case the type

of f is C@l, that is the declared class C labeled with the availability level l of the instantiating

object. typeOfField(C, l, f) looks up of the type of field f in C, andmethod(C, m) looks up the method

declaration of m in C. These two definitions are only defined if C ∈ dom(C).

Typing of classes. Typing for methods and classes is in Figure 6. The typing judgment for classes

is Σ ⊢ D is ok for l, where Σ is a global type context, D is the class to be checked, and l is the

availability level of the instantiating object. l defines the restriction of object instantiation based

on the availability (Section 3.4.3). The rule T-Class-1 specifies that it is ok to instantiate a class for

an object with availability level l if the super class and all methods are ok under that availability

level. Rule T-Class-2 defines typing for local classes. Fields of local classes can contain values with

any availability level.

The typing judgment for methods is Σ ⊢ M is ok in C for l, where Σ is a global type context,M is

the method definition, C is the defining class, and l is the availability level of the instantiating object.
The rule T-Method checks that the methods body is well-typed and that in case of overriding, the

types of the methods match.

, Vol. 1, No. 1, Article . Publication date: March 2020.

Rethinking Safe Consistency in Distributed Object-Oriented Programming 13

Σ; Γ , x 7→ α ⊢ x : α
T-Var

Σ; Γ ⊢ e1 : α Σ; Γ , x 7→ α ⊢ e2 : β

Σ; Γ ⊢ let x = e1 in e2 : β
T-Let

Σ(ρ) <: C@l

Σ; Γ ⊢ ref<C@l>(ρ) : C@l
T-Ref

Σ(ρ) = C0@l C <:D C0 Σ ⊢ C(C) is ok for l
Σ; Γ ⊢ e : α fields(C, l) = β f α <: β

Σ; Γ ⊢ new C@l(e) at ρ : C@l
T-New

Σ; Γ ⊢ e0 : C0@l0
typeOfField(C0, l0, f) = C@l

Σ; Γ ⊢ e0.f : C@(l0 ⊔ l)
T-FieldRead

Σ; Γ ⊢ e0 : C0@l0
typeOfField(C0, l0, f) = C@l
Σ; Γ ⊢ e : α α <: C@l

Σ; Γ ⊢ e0.f = e : α
T-FieldWrite

method(C0, m) = β m(α x){ return e ′ }
Σ; Γ ⊢ e0 : C0@l0 Σ; Γ ⊢ e : γ γ <: α

Σ; Γ ⊢ e0.m(e) : β
T-Invoke

Fig. 7. Typing for expressions.

P = e1, ..., en Σ; • ⊢ e : α

Σ ⊢ P is ok
T-Prog

Fig. 8. Typing for programs.

Typing of expressions. Figure 7 defines the typing rules for expressions. The type judgment

Σ; Γ ⊢ e : α states that expression e has availability type α with the global type context Σ and the

local type environment Γ : Var → α , which maps variables to their types.

The type rules T-Var and T-Let are standard. T-Ref states that the type of a reference to a store

location ρ has to be a super type of the declared type of the store location Σ(ρ). T-New is for object

creation. It requires that the consistency level of the object and the consistency level declared by

the store are equal, and that the class of the object is a subclass of the class defined by the store.

Further, the rule ensures that the class can be instantiated for the consistency level l and that the

parameters are well-typed according to the fields of the class C. The order of the expressions has to
match the order of fields. Note that fields is only defined when C ∈ dom(C) or C = Object, so only

classes that are available in the class table or Object can be instantiated. For T-FieldRead, the

resulting type is the declared class of the field with the least-upper bound of the availability levels

l0 of the receiver and l of the field. For T-FieldWrite, the right hand side has to be a subtype of

the declared type of f. The field write expression returns the assigned expression e , thus the return
type is α . T-Invoke is similar.

Typing of programs. The typing rule for programs is shown in Figure 8. A program is well-typed,

when all expressions representing the processes are well-typed. The type judgment requires a

global type context, which has to be given with the program definition.

4.3 Store model
We now introduce the replicated store used by the core calculus. Replicated stores contain objects
o ∈ Obj at locations ρ ∈ Loc. Objects belong to a class C and hold a sequence of values v one for

each field of C, in the same order: o ∈ Obj ::= obj C(v).
Objects are stored in replicas ω : Loc → (ALevel × Obj), which hold for each location ρ ∈ Loc

an instance of an object together with its availability level l ∈ ALevel. Objects local to one replica

has availability level Local. A (replicated) store Ω = ω1, ...,ωn is a sequence of replicas ωk . For a

program P , the store is defined such that each expression ek ∈ P has its own replica ωk .

, Vol. 1, No. 1, Article . Publication date: March 2020.

14 M. Köhler, N. Eskandani, P. Weisenburger, A. Margara, and G. Salvaneschi

fields(C, l) = α f if f′ = fi then v
′ = vi

⌜obj C(v).f′⌝ = v ′
A-ReadField

fields(C, l) = α f if f′ = fi then v
′ = v ′′i if f′ , fi then vi = v

′′
i

⌜obj C(v).f′ B v ′⌝ = obj C(v ′′)
A-WriteField

Fig. 9. Auxiliary definitions for objects.

Enforcing consistency. As we want to reason about objects in a store with different availability

levels and thus consistency guarantees, we define the consistency of a store.

Definition 4.1. A store Ω = ω is fully-consistent, iff ∀ρ, i, j . ωi (ρ) = (l, ...) = ωj (ρ) ∧ l , Local.

With full consistency, all replicas of the store contain the same objects but local objects. Weaker

models relax this constraint. Predicate consistentl(Ω,k, ρ) is satisfied if the object at location ρ in

replicaωk ∈ Ω is consistent to the complete store Ω w.r.t. the availability level l. With the predicate,

we control when operations with availability l are performed, i.e., if the predicate does not hold, a

process has to wait to progress. We require that If the store is fully-consistent the predicate holds –

for any availability level:

∀Ω,k, l, ρ. Ω fully-consistent⇒ consistentl(Ω,k, ρ) (1)

Predicate consistentLocal always holds because local operations do not rely on the replicated store –

hence the consistency is not relevant. The predicate consistentl models the coordination among

replicas required for availability level l. When the predicate is defined using the store Ω, the system
needs coordination among replicas as the current state of other replicas has to be checked. In the

formalization, the predicate consistentl captures the semantics of the availability level l, abstracting
over the precise definition of the consistency model, i.e., over details like operations order and

message propagation. For example, the definition of sequential consistency requires, amongst

others, the order of operations of a single process. Store models that can capture such order can be

defined, e.g., as a history of operations [37] and are orthogonal to our work.

4.4 Dynamic semantics
We define a small-step operational semantics for the core calculus with transition relations for

processes and programs. The semantics relies on the auxiliary definitions in Figure 9. ⌜o.f⌝ reads
the value of a field f from an object o, and ⌜o.f B v⌝ defines an object o with field f set to v . In
the rules, the notation e1[x← e2] indicates the substitution of x with e2 in e1.

Local transition rules. We first define the semantics of single processes (Figure 10). Process
configurations ⟨ω | e⟩ capture the states of processes, i.e., the state of the process’ local replica ω
and an expression e that defines the current execution. The judgment Ω;k ⊢ ⟨ω | e⟩ → ⟨ω ′ | e ′⟩
states that process k with configuration ⟨ω | e⟩ makes a step to configuration ⟨ω ′ | e ′⟩ when the

whole replicated store has the state Ω. k uniquely identifies the process. Transitions of process

configurations do not change the store Ω, but only the local replica ω. Ω is only used with the

consistent predicate to check whether the local replica is consistent.

Rule Context induces a call-by-value, left-to-right evaluation through an evaluation context E.
Rule Let replaces the variable x in e2 with value v as usual. New creates an object store location

ρ in ω with class C and availability l. Location ρ must be free, i.e., there is no other object in ρ.
FieldRead returns the value of the field f of object ρ. The returned value is a reference (references

are the only values in the calculus). The premise ensures that the replicated store Ω is consistent

with respect to the availability l′ of the stored object, i.e., a field can only be read if the requirements

, Vol. 1, No. 1, Article . Publication date: March 2020.

Rethinking Safe Consistency in Distributed Object-Oriented Programming 15

(Context) E ::= E[·] | let x = E in e | new C@l(v, E, e) at ρ | E.f | E.f = e | v .f = E | E.m(e) | v .m(E)

Ω;k ⊢ ⟨ω | e⟩ → ⟨ω ′ | e ′⟩

Ω;k ⊢ ⟨ω | E[e]⟩ → ⟨ω ′ | E[e ′]⟩
Context

Ω;k ⊢ ⟨ω | let x = v1 in e2⟩ → ⟨ω | e2[x← v1]⟩
Let

ρ < dom(ω) ω ′ = ω, ρ 7→ (l, obj C(v))

Ω;k ⊢ ⟨ω | new C@l(v) at ρ⟩ → ⟨ω ′ | ref<C@l>(ρ)⟩
New

ω(ρ0) = (l
′, obj C′(v)) ⌜obj C′(v).f⌝ = ref<C@l>(ρ) consistentl′(Ω,k, ρ0)
Ω;k ⊢ ⟨ω | ref<C0@l0>(ρ0).f⟩ → ⟨ω | ref<C@(l0 ⊔ l)>(ρ)⟩

FieldRead

ω(ρ0) = (l
′, obj C′(v))

⌜obj C′(v).f B v⌝ = o′ ω ′ = ω, ρ 7→ (l′,o′) consistentl′(Ω,k, ρ0)
Ω;k ⊢ ⟨ω | ref<C0@l0>(ρ0).f = v⟩ → ⟨ω

′ | v⟩
FieldWrite

ω(ρ0) = (l
′, obj C′(v)) method(C′, m) = β m(α x){ return e } consistentl′(Ω,k, ρ0)

Ω;k ⊢ ⟨ω | ref<C0@l0>(ρ0).m(v)⟩ → ⟨ω | e[x← v][this← ref<C′@l′>(ρ0)]⟩
Invoke

Fig. 10. Operational semantics: Local transitions.

Ω = ω1, ...,ωn Ω;k ⊢ ⟨ωk | ek ⟩ → ⟨ω
′
k | e

′
k ⟩

..., ⟨ωk | ek ⟩, ...⇝ ..., ⟨ω
′
k | e

′
k ⟩, ...

G-Local

ωj (ρ) = (l,oj) ωk (ρ) = (l,ok) l , Local oj , ok
o′ = mergel(Ω,oj ,ok) ω ′j = ωj , ρ 7→ (l,o

′) ω ′k = ωk , ρ 7→ (l,o
′)

..., ⟨ωj | ej ⟩, ..., ⟨ωk | ek ⟩, ...⇝ ..., ⟨ω
′
j | ej ⟩, ..., ⟨ω

′
k | ek ⟩, ...

G-Converge

ωj (ρ) = (l,oj) ωk (ρ) undefined l , Local ω ′k = ωk , ρ 7→ (l,oj)

..., ⟨ωj | ej ⟩, ..., ⟨ωk | ek ⟩, ...⇝ ..., ⟨ωj | ej ⟩, ..., ⟨ω
′
k | ek ⟩, ...

G-Replicate

Fig. 11. Operational semantics: Global transitions.

of the availability level are met. FieldWrite changes to v the f field of the object o in replica ω at ρ
Like FieldRead, the rule can only be applied if consistent holds for the store. A field write returns

the assigned value. Invoke looks up the receiver object at ρ0 and resolves its class to retrieve the

method m. Again, a consistency check is performed to execute the method.

Global transition rules. For a program P , a program configuration is a sequence of process config-

urations ⟨ω | e⟩ such that P = e . The replicated store Ω is the sequence of all replicas Ω = ω. The
global transition relation is in Figure 11. The program takes a step if one of the processes does a

local transition (G-Local).

Rule G-Converge and G-Replicate coordinate the replicas. The function mergel(Ω,o1,o2) for
each availability level l returns the merged state of two objects, given the current store Ω. Like the
predicate consistent, merge is defined differently for each consistency level l. If merge is undefined
for two objects, they can not be merged given the current state of store Ω. This is case when certain

consistency or isolation guarantees are not fulfilled, e.g., an operation on object o which is part of

a method invocation can only be merged when all operations that are part of the invocation are

visible. We require that if merge is defined o1 and o2 and the returned object have the same class.

∀Ω, l. mergel(Ω, obj C1(...), obj C2(...)) = obj C3(...) ⇒ C1 = C2 = C3 (2)

In G-Converge, merge defines how replicas converge. When two replicas ωj and ωk store

different objects at location ρ, the objects are merged and the result is stored in both replicas at ρ.

, Vol. 1, No. 1, Article . Publication date: March 2020.

16 M. Köhler, N. Eskandani, P. Weisenburger, A. Margara, and G. Salvaneschi

Objects with availability Local can not be merged as local objects are not replicated. G-Replicate

replicates objects that are not available on a replica ωk to that replica.

4.5 Properties
In this section we discuss the properties of the core calculus and provide a sketch of the proofs.

The full proofs are in Appendix ??. First, we give the definition of well-defined class tables.

Definition 4.2. Class table C is well-defined, iff the following hold: (1) Object < dom(C),

(2) ∀C ∈ dom(C). C(C) = class C extends ..., and (3) ∀C anywhere in C, C ∈ dom(C)∨C = Object.

The definition states that (1) Object is not a valid identifier for a class, (2) that the class definition
at C(C) has the name C, and that (3) all class identifiers C that appear anywhere in C are Object or

an element of C. We assume that the global class table for the calculus C is well-defined. Next, we

relate program expressions to the class table C.

Definition 4.3. An expression e is well-defined, iff ∀C in e, C = Object ∨ C ∈ dom(C).

Similar to well-defined class tables, an expression e is well-defined if all class identifiers C that
appear in e are Object or an element of C. Next, we establish a relation between replicas ω and

global type environments Σ. For that, we define a well-typed object:

Definition 4.4. Object o = obj C(v) is well-typed with l in Σ, iff

fields(C, l) = β f⇒ ∃α . Σ; • ⊢ v : α ∧ α <: β .

Objects are well-typed, when the values of the fields are subtypes of the declared fields for an

object with availability level l. We now define the relation between replicas and type environments.

Definition 4.5. Replica ω satisfies Σ, iff (1) dom(ω) ⊆ dom(Σ),
and (2) Σ(ρ) = C@l∧ω(ρ) = (l′, obj C′(...)) ⇒ obj C′(...) well-typed with l in Σ ∧ l = l′∧ C = C′.

This property states that (1) all locations of the replica are in the type environment, and that

(2) all objects in the store are well-typed with their availability level and that the type of the object

adheres to the type declared in the environment.

4.5.1 Preservation. We show that the transition relation preserves typing. We show the following

lemma that relates substitution and type environments.

Lemma 4.6. If Σ; Γ , x 7→ α ⊢ e : β and Σ; Γ ⊢ e ′ : α ′ and α ′ <: α , then Σ; Γ ⊢ e[x← e ′] : β ′

and β ′ <: β .

Proof. By induction over derivations of Σ; Γ ⊢ e : α . □

We start with formalizing preservation of expressions, i.e., when a well-typed expression e makes

a step with a ω that satisfies Σ, then the resulting expression is well-typed and the resulting store

satisfies a superset of Σ.

Theorem 4.7 (Preservation of expressions). If Σ; Γ ⊢ e : α and Ω;k ⊢ ⟨ω | e⟩ → ⟨ω ′ | e ′⟩
and ω satisfies Σ, then for some Σ ′ ⊇ Σ and β <: α holds Σ ′; Γ ⊢ e ′ : β and ω ′ satisfies Σ ′.

Proof. By induction over derivations of Ω;k ⊢ ⟨ω | e⟩ → ⟨ω ′ | e ′⟩ and with Lemma 4.6. □

We have now shown that single processes feature type preservation. The following theorem

states preservation of full programs.

Theorem 4.8 (Preservation of programs). Let P = e1, ..., en and Ω = ω1, ...,ωn .
If Σ ⊢ e1, ..., en is ok and ⟨e1 | ω1⟩, ..., ⟨en | ωn⟩⇝ ⟨e

′
1
| ω ′

1
⟩, ..., ⟨e ′n | ω

′
n⟩ and ω satisfies Σ, then

for some Σ ′ ⊇ Σ holds Σ ′ ⊢ e ′
1
, ..., e ′n is ok and ω ′ satisfies Σ ′.

, Vol. 1, No. 1, Article . Publication date: March 2020.

Rethinking Safe Consistency in Distributed Object-Oriented Programming 17

Proof. By induction over derivations of ⟨e1 | ω1⟩, ..., ⟨en | ωn⟩⇝ ⟨e
′
1
| ω ′

1
⟩, ..., ⟨e ′n | ω

′
n⟩. Follows

by preservation of expressions. G-Converge does not change the type of objects in the replicas ωi .

G-Replicate only adds entries to a replica that have been shown to satisfy Σ. □

4.5.2 Progress. Progress specifies that a well-typed program that is not a value, can make a

reduction step [39]. We use a weaker notion of progress for expressions as processes may not

progress if they are waiting for a consistent store. For full programs, we use a standard definition

of progress as in such case we show that processes waiting for consistency eventually perform a

step when the consistency condition is satisfied. We first define unique locations for (sequences of)

expressions.

Definition 4.9. e has unique locations, iff for the sequence e ′ of all subexpressions of e holds:
e ′i = new Ci@li (...) at ρi ∧ e

′
j = new Cj@lj (...) at ρ j ∧ i , j ⇒ ρi , ρ j .

The property ensures that only one object is created for each store location ρ. As locations are
infinite, the property does not reduce expressiveness. Next, we define progress for expressions.

Theorem 4.10 (Progress of expressions). If Σ; • ⊢ e : α and e is well-defined and has unique
locations, and ω satisfies Σ, then
(1) if e = ref<C0@l0>(ρ0).f, then ρ0 < dom(ω) or ¬consistentl′(Ω,k, ρ0) with Σ(ρ0) = C′@l′ for

some C′ or Ω;k ⊢ ⟨ω | e⟩ → ⟨ω ′ | e ′⟩ for some e ′ and ω ′.
(2) if e = (ref<C0@l0>(ρ0).f = v), then ρ < dom(ω), or ¬consistentl′(Ω,k, ρ0)withΣ(ρ0) = C′@l′

for some C′ or Ω;k ⊢ ⟨ω | e⟩ → ⟨ω ′ | e ′⟩ for some e ′ and ω ′.
(3) if e = ref<C0@l0>(ρ0).m(v), then ρ < dom(ω) or ¬consistentl′(Ω,k, ρ0) with Σ(ρ0) = C′@l′

for some C′ or Ω;k ⊢ ⟨ω | e⟩ → ⟨ω ′ | e ′⟩ for some e ′ and ω ′.
(4) else e ∈ Value or Ω;k ⊢ ⟨ω | e⟩ → ⟨ω ′ | e ′⟩ for some e ′ and ω ′.

Proof. By induction on type derivations Σ; Γ ⊢ e : α . □

Progress for expressions is only defined if the processes are not waiting for other processes to

either replicate an object to a location ρ or for the store to be consistent. In the case of programs,
whether objects are replicated and the store is consistent eventually, depends on the specific

definition ofmerge. Asmerge is a partial function, rule G-Convergemay not be applicable, leaving

the store inconsistent, and possibly even leading to deadlocks. In the definition of progress for

programs we assume that merge is defined when applied on objects with the same class.

Lemma 4.11 (Progress of programs). Let P = e1, ..., en and Ω = ω1, ...,ωn . If Σ ⊢ P is ok, and e
is well-defined and has unique locations, and ω satisfies Σ, and ∀C. mergel(Ω, obj C(...), obj C(...))
defined, then ∀i . ei ∈ Value or ⟨e1 | ω1⟩, ..., ⟨en | ωn⟩⇝ ⟨e

′
1
| ω ′

1
⟩, ..., ⟨e ′n | ω

′
n⟩.

Proof. By induction on derivations of ⟨e1 | ω1⟩, ..., ⟨en | ωn⟩⇝ ⟨e
′
1
| ω ′

1
⟩, ..., ⟨e ′n | ω

′
n⟩. For rule

G-Local, we use progress of expressions, but if it can not be applied, then (1) all expressions are

values already or (2) an object of location ρ is not available in a replica, i.e. ρ < dom(ωi) for some i ,
or (3) the predicate consistent is not satisfied. If (2), then the rule G-Replicate can be applied to

define the location ρ in the replica. If (3), then rule G-Converge can be applied to make replicas

consistent and satisfy consistent because of equation 1. G-Converge can be applied, because merge
is defined since the classes of the merged objects are equal as follows from ωi satisfies Σ. □

If merge is defined for objects of the same class, the state of two replicas can be merged, if

they differ, making their state equal. When the state of all replicas is equal, the store is fully-

consistent. On a fully-consistent store consistent is always satisfied, thus the processes waiting for

consistency in the operational semantics can further progress. In practice, the requiring that merge

, Vol. 1, No. 1, Article . Publication date: March 2020.

18 M. Köhler, N. Eskandani, P. Weisenburger, A. Margara, and G. Salvaneschi

is always defined for two objects of the same class means that two objects can be merged any time

disregarding any limitations that are given by the isolation, hence violating isolation guarantees.

4.5.3 Non-interference. Non-interference in the availability types system states that operations on

High objects can not affect operations on Low objects. We first define what it means for stores to

be indistinguishable.

Definition 4.12. Objects o1 = obj C1(v) and o2 = C2v
′
are indistinguishable for l when instantiated

as l′, iff C1 = C2 and with fields(C1, l0) = C@l f for all i holds: vi = v
′
i if li ⊑ l.

Definition 4.13. Replicas ω1 and ω2 are indistinguishable for l, iff for all l′ ⊑ l such that

l′ , Local holds: ω1(ρ) = (l
′,o1) and ω2(ρ) = (l

′,o2) and o1 and o2 are indistinguishable for l
when instantiated as l′. We write ω1 ≈l ω2.

Now, we can define non-interference for expressions.

Theorem 4.14 (Non-interference). If Σ; Γ ⊢ e : α , and ω1 ≈l ω2, and ω1,ω2 satisfy Σ, and
Ω;k ⊢ ⟨ω1 | e⟩ →

∗ ⟨ω ′
1
| v1⟩, and Ω;k ⊢ ⟨ω2 | e⟩ →

∗ ⟨ω ′
2
| v2⟩, then ω ′1 ≈l ω

′
2
.

Proof. By induction over number of steps in Ω;k ⊢ ⟨ω1 | e⟩ →
∗ ⟨ω ′

1
| v1⟩. □

Non-interference states that if a well-typed expression is evaluated twice with different stores

that are only identical in their Low objects, in the resulting stores, Low objects are also identical.

Hence, in a well-typed expression High values have no effect on Low objects.

5 IMPLEMENTATION
The implementation of ConSysT includes the type checker and the middleware that supports repli-

cated objects with different availability levels. Overall, the implementation consists of ∼ 4,800 lines

of Scala and Java code.

Type Checker. A valid ConSysT program is a valid Java program. ConSysT adopts the Java type

system for basic types, and implements availability types as Java type annotations using the Checker

Framework [31]. ConSysT allows the definition of a lattice of annotations, and type checking is

based on the subtype relation induced by the lattice and by an analysis of information flow to

prevent implicit flows.

Middleware. Within each process (JVM), replicated objects are standard Java objects. We use

Akka [2] to implement the middleware that synchronizes the replicated objects.

We currently support three availability levels: eventual (Ev) and causal (Cau) belong to the High
availability levels and do not require blocking coordination, whereas sequential (Seq) belongs to
Low availability levels and requires coordination for consistency and isolation.

Seq provides sequential consistency and serializable isolation through a lock associated to each

replicated object and managed by a master replica for that object. Processes contact master replicas

to acquire the lock on one or more objects – the lock set – prior to performing operations. For field

accesses, the lock set includes the receiver object. For method invocations, it includes all replicated

objects (which we approximate via static analysis) accessed within the method execution. A two

phase locking (2PL) protocol locks all the objects in the lock set before performing an operation.

Crucially, this approach guarantees pessimistic concurrency control without deadlocks, which avoids

aborting and retrying methods execution. As a result, methods can safely perform side effects –

preserving the semantics of Java programs.

The protocol for Seq replicated objects works as follows. Consider a process p on a replica k
performing an operation on the object o.

, Vol. 1, No. 1, Article . Publication date: March 2020.

Rethinking Safe Consistency in Distributed Object-Oriented Programming 19

(1) p tries to acquire the lock for all objects in the lock set of the operation by contacting their

masters. The operation is repeated for all masters until the locks for all objects is granted.

(2) The masters return to p the latest state of each object in the lock set.

(3) Replica k updates its local state for all the objects in the lock set.

(4) The operation is performed locally on replica k .
(5) The new state of all changed objects is sent to and acknowledged by the masters. The locks in

the lock set are released.

(6) The system returns the result of the operation to the calling process.

Ev and Cau levels provide eventual and causal consistency, respectively, with no isolation, and

require non-blocking coordination. Operations on a Ev or Cau object o are performed on the local

replica, and eventually propagated to other replicas. In the case of Ev, the propagation has two

steps: (i) operations are re-executed on a master replica for o, which is responsible for merging the

operations on o from all replicas; (ii) the state of o in local replicas is synchronized with the state in

the master. This synchronization step is called periodically or can be triggered manually. The order

in which operations are applied is decided by the master replica. For example, assume operationm
is performed on the replica o1 of the object o, and operation n on the replica o2, then ConSysT decides
an order for n andm, e.g., firstm and then n. To ensure eventual consistency, o2 reverts to the state

before executing n, then it appliesm and n in the order decided by the master replica. As clients

can always perform operations on their local replica and the middleware might asynchronously

re-execute them in a different order, the protocol is non-blocking, In the case of Cau, operations are
distributed to all other replicas where they are applied when all causal dependencies are satisfied.

Cau associates metadata information (vector clocks) to operations such that replicas can detect

whether the dependencies for an operation are fulfilled.

As Ev operations are synchronized by re-executing them on the master and Cau re-executes

operations on other replicas, executing Ev or Cau operations that contain other operations requires

a special treatment. In the remainder of this section, we only refer to Ev for simplicity. When the

Ev operation is re-executed, then nested operations on other objects would be also re-executed,

resulting in multiple executions. To address this issue, the ConSysT runtime adopts a multiversion

cache. For example, in the following code snippet the invocation of incSoldTickets is Ev, and
contains an operation on another object:

1 class Concert { ...

2 Ref <@Seq Counter > soldTickets;

3 void incSoldTickets () {

4 return soldTickets.ref.inc(); // Seq Op

5 }}

6 Ref <@Ev Concert > concert = ...

7 concert.ref.incSoldTickets (); // Ev Op

Since concert is Ev, the incSoldTickets call (Line 7) occurs directly on the current replica, executing
the incmethod on soldTickets. Eventually, the incSoldTicketsmethod is executed on other replicas

and inc is performed again even though the user called inc only once. Instead, the multiversion

cache ensures that the call to inc is cached and not repeated. In summary, when an operation a is
nested in another operation b that may be re-executed, the result of a is cached to avoid re-executing
a. In our implementation, b can be re-executed if it is either Ev or Cau. The availability level of a is
irrelevant in this case.

, Vol. 1, No. 1, Article . Publication date: March 2020.

20 M. Köhler, N. Eskandani, P. Weisenburger, A. Margara, and G. Salvaneschi

6 EVALUATION
Our evaluation is based on case studies to validate the performance and the design of ConSysT.
Additionally, we conducted microbenchmarks to evaluate the performance of different availability

levels.

6.1 Performance
We evaluated each case study in two configurations: All-Seq and Mixed. In All-Seq, every

replicated object has Seq availability, forbidding concurrent access to shared data, and ensuring

that the application is correct w.r.t. replication. The Mixed configuration uses High available data

(either Ev or Cau depending on the use case) and Seq availability. The type system ensures the

correctness of the mixing. We measure the runtime gain when using Mixed instead of All-Seq.

The benchmarks are executed on nine processes. For each case study, one instance hosts the

master replicas. The other machines host follower replicas that perform distributed operations.

Counter. We implemented a replicated integer counter [19, 29]. One instance keeps the master

replica of the counter, and the follower replicas perform increment operations. In the Mixed

configuration, the counter is replicated using Ev.

TicketShop. The case study is the TicketShop example from Section 2. In theMixed configuration,

the availability levels are assigned as in Figure 1b with Seq and Ev representing Low and High,
respectively. One instance hosts the master replica of the TicketShop and eight follower replicas

continuously perform operations on the shop: retrieving a band name (58 %), retrieving the data of

the concert (22 %), and buying a ticket (20 %). The operations are randomly chosen according to a

Zipf distribution.

MixT Message Groups. We reimplemented this application from the MixT paper [29]: users join

message groups and post messages to all group users. Replicas continuously execute operations

according to a Zipf distribution: post to a group (22 %), add a user to a group (20 %), retrieve the

inbox of a user (58 %). In Mixed, accessing the inbox and the users list is a Ev operation. Other

operations are Seq. The master replicas are evenly distributed among followers, each hosting 500

groups, for a total of 4 K groups. Each group initially contains a single user.

E-Commerce. The case study is an online shopping application. A server holds the master replica

of the products and of the users. These are implemented as a Java LinkedList and as a HashMap

replicated using ConSysT. Followers randomly execute operations from a set of seven requests (from

a Zipf distribution): searching the product database (38 %), querying product information (19 %)

adding items to the cart (13 %), adding balance (10 %), logging in (8 %), checking out (6 %), and

logging out (5 %). In the Mixed configuration, the product and user databases are Ev, the users are
Seq.

IPA Twitter Clone. We reimplemented the Retwis twitter clone from the IPA paper [19] using

ConSysT. Retwis supports operations like tweeting, retweeting, following and unfollowing. Users

and tweets are Ev-replicated objects. A replicated counter with Seq availability counts the retweets

for each tweet.

Results. We measured the run time for executing a batch of operations for each case study. In

each case study, followers are continuously executing concurrent operations simulating a high load

on the system. For operations on High available objects, we regularly manually synchronize the

objects. Table 1 shows the run time of as single operation and the number of (Seq) objects in each

case study. Figure 12 shows the run time of theMixed configuration relative to theAll-Seq baseline.

, Vol. 1, No. 1, Article . Publication date: March 2020.

Rethinking Safe Consistency in Distributed Object-Oriented Programming 21

Table 1. Performance metrics.

Case Study

Runtime (ms)
of objects

Local Datacenter Geo-Replicated

Mixed All-Seq Mixed All-Seq Mixed All-Seq all Seq

Counter 14.42 90.40 9.24 63.40 28.57 1 642.19 1 0

TicketShop 177.70 184.34 121.08 146.14 5 481.82 7 444.31 4 3

Message Groups 29.38 81.89 10.41 25.60 213.35 1 307.00 13 500 4 500

E-Commerce 524.90 1 376.43 378.89 1 489.69 6 214.13 88 328.66 3 320 2 000

Twitter Clone 20.03 71.52 5.64 18.73 154.16 863.81 27 000 9 000

Counter TicketShop Message Groups E-Commerce Twitter Clone

0

0.2

0.4

0.6

0.8

1

R
e
l
a
t
i
v
e
r
u
n
t
i
m
e

• Local • Datacenter • Geo-Replicated

Fig. 12. Mixed compared to All-Seq .

1.0 is the run time of the All-Seq configurations. We executed the benchmarks in three different

setups: (i) on a single machine (3.1 GHz Intel Core i5-7200U processor and 16 GiB memory, Linux

Mint 19.2), (ii) in a single AWS datacenter on machines with 2.5 GHz Intel Xeon processors and 2

GiB memory running Ubuntu Server 18.04, and (iii) geo-distributed on the same AWS machines: 3

instances in EU (London), and 2 instances in US East(Ohio), Asia Pacific (Mumbai), and Canada

(Central), each.

In Counter, the Mixed configuration only takes 1.7 % – 16 % of the time of the baseline. As there

is only one replicated object, the counter, all non-blocking synchronization occurs asynchronously

in the Ev case, improving the run time. In the Seq case, however, the followers have to block and

synchronize for every operation. In TicketShop, the Mixed configuration requires 74 % – 96 % of the

time of All-Seq. The reason for the relatively small speed-up is that there is only one High object

(and three Low objects). Thus, even in the Mixed configuration most operations are accessing

Seq objects, which results in a modest speed-up compared to all objects set to Seq. For Message
Groups, we measured two Mixed configurations using Ev and Cau availability levels, respectively,

as Cau preserves the order of (causally) related messages. For Ev (blue/left bar), the run time is

16 % – 40 % of the baseline. The comparabale high speed-up of High operations in the geo-distributed
setup comes from the high latency between replicas, which increases the wait time for blocking

synchronization. Similarly, in E-Commerce, the Mixed configuration takes 7%– 38% of the run

time of All-Seq. The reason is that for All-Seq the distributed data structures are very inefficient.

A lookup in a distributed map or in a distributed list requires multiple (nested) operations. For

All-Seq, these operations are blocking and very time-consuming, i.e., 88s for a single operation. In

Twitter clone, theMixed configuration takes 18 % – 30 % of the run time compared to the baseline.

Although the case study uses a single instance to host all master replicas, the speed-up is similar to

Message Groups, which has the same percentage of Seq objects (Table 1).

The high absolute run times in some case studies are explained by the fact that the Seq availability
level requires serializability, which is very slow in a high latency (geo-distributed) setup.

The results we discussed so far represent an extreme case in which applications continuously

perform operation, resulting in high contention on locks for Low. Tomeasure the effect of contention,

, Vol. 1, No. 1, Article . Publication date: March 2020.

22 M. Köhler, N. Eskandani, P. Weisenburger, A. Margara, and G. Salvaneschi

1 Ref <@Ev Counter > soldTickets;

2 int getSoldTickets () {

3 Requests.RequestHandler handler = soldTickets

4 .getReplSys ().acquireHandlerFromCoordinator ();

5 SerializationResult <Counter > result = handler.request(

6 soldTickets.getBoundName (),

7 new SerializeOperations(

8 soldTickets.getLocalOperations ()));

9 handler.close();

10 return result.object.value; }

1 // Centralized component

2 Result handleRequest(name: String , request: Request) {

3 if (request instanceof SerializeOperations) {

4 Ref <?> object = replicatedObjects.get(name);

5 synchronized (object) {

6 ((SerializeOperations) request).getOperations ().

7 forEach(object :: applyOperation);

8 }

9 return new SerializationResult(object);

10 } else { ... } }

(a) Manual synchronization.

1 Ref <@Seq Counter > soldTickets;

2 int getSoldTickets () {

3 return soldTickets.ref.value;}

(b) ConSysT.

Fig. 13. Access to soldTickets in TicketShop.

Table 2. Effect of contention.

Delay
Runtime (ms)

Mixed All-Seq

10 ms 0.24 27.43

100 ms 0.36 12.36

we also repeated the Counter case study by adding a delay between operations. The results are

presented in Table 2. We measured the runtime of an operation if there is a 10ms or a 100ms delay,

respectively, between operations. In the Mixed configuration, we measured 0.24ms and 0.36ms

per operation for the cases with 10ms and 100ms delay, respectively. In the All-Seq configuration,

we measured 27.43ms and 12.36ms for 10ms and 100ms delay. This shows that Mixed provides

significant benefits on latency even in the case of low contention.

In summary, mixing availability levels brings a a large speed-up compared to a version with only

Low available objects.

6.2 Application Design
To evaluate the effects of ConSysT on software design, we analyse three the case studies and compare

different variants.

MixT Message Groups. Figure 14a shows the code for posting messages in MixT’s Message Groups.

MixT transactions can span multiple databases with different levels. In MixT, consistency levels are

associated to the databases in which the objects are stored, e.g., the list of users is in a database that

is strongly consistent (linearizable) and every user entry is in a database that is causally consistent

(Line 2). Transactions are introduced by mixt_method (Line 3). The code iterates over all users

, Vol. 1, No. 1, Article . Publication date: March 2020.

Rethinking Safe Consistency in Distributed Object-Oriented Programming 23

1 class group {

2 RemoteList <Handle <user , causal >, linearizable > users;

3 mixt_method(add_post) (post) mixt_captures(users) (

4 var i t e r a t o r = u s e r s ,
5 while (i t e r a t o r . i s V a l i d ()) {
6 i t e r a t o r −>v . i n b ox . i n s e r t (p o s t) ,
7 i t e r a t o r = i t e r a t o r −> n e x t }) }

(a) MixT.

1 public class Group {

2 public Ref <@Seq List <Ref <@Cau User >> users;

3 public void addPost(String post) {

4 var iterator = users.ref.iterator ()

5 while (iterator.hasNext ())

6 iterator.next().ref.inbox.insert(post); } }

(b) ConSysT.

Fig. 14. Message Groups.

(Line 4–7) and adds a post to every inbox (Line 6). In MixT, (i) transactions must be written in a

DSL embedded into C++ code (Line 3–7), (ii) replicated objects can only be accessed and interact

with each other inside transactions and (iii) transactions cannot be nested.

In ConSysT (Figure 14b) instead, (i) no separate DSL for transactions is needed, and availability

levels reconcile with standard OO programming as (ii) replicated objects can be used and interact

with each other everywhere in the program and (iii) operations on replicated objects can be nested,

i.e., they can call other operations on replicated objects.

IPA Twitter Clone. In the IPA version of the twitter clone there are three weakly consistent

sets (retweets, followers, followees) which are instances of the ADT IPASet. In the IPA system,

only predefined ADTs, such as IPASet support consistency levels, hindering code reuse because

developers need to implement a new ADT (and the Cassandra query relative to each ADT operation)

for each object they want to associate a consistency level with.

ConSysT instead enables developers to associate availability levels to objects from existing Java

classes. In the ConSysT reimplementation, the objects above are modeled using a standard set form

the Java collections library. The specific type is a set of weakly consistent references to replicated

objects (Set<Ref<@Weak ...>>).

TicketShop. We compare two versions of TicketShop. In version v1, the runtime does not provide

any out-of-the-box consistency guarantee: coordination across replicas needs to be implemented in

user code. Version v2 uses ConSysT abstractions to define Seq replicated objects. Figure 13a and 13b

show an excerpt of both versions, focusing on the code defining the accesses to the soldTickets

field.

Version v1 manually enforces the sequential consistency semantics on top of weaker models

(such as Ev in ConSysT). For instance, in Figure 13a, replicas explicitly synchronize with each

other by sending SerializeOperations requests to a central component that orders the accesses to

replicated objects. In v2, ConSysT’s availability types make the developer’s intent explicit providing

the runtime the information to execute the application correctly, hiding the complexity of distributed

consensus. The full TicketShop example in Figure 1b performs three accesses to Seq-available values
(soldTickets.ref.value, hall.ref.maxAudience, soldTickets.ref.inc()), each requiring additional

∼ 20 LOC. Also, in ConSysT the developer does not need to implement error-prone synchronization

on the master side.

, Vol. 1, No. 1, Article . Publication date: March 2020.

24 M. Köhler, N. Eskandani, P. Weisenburger, A. Margara, and G. Salvaneschi

A
v
e
r
a
g
e
t
i
m
e
[
m
s
]

Ratio of low available replicated objects

Branching factor 1 Branching factor 2 Branching factor 3 Branching factor 4

D
e
p
t
h
1

0 1

0

1

(1 object)

0 0.25 0.5 0.75 1

0

20

(2 objects)

0 0.25 0.5 0.75 1

(3 objects)

0 0.25 0.5 0.75 1

(4 objects)

0 0.25 0.5 0.75 1

(5 objects)

D
e
p
t
h
2

0 0.25 0.5 0.75 1

0

20

(3 objects)

0 0.25 0.5 0.75 1

(7 objects)

0 0.25 0.5 0.75 1

(13 objects)

0 0.25 0.5 0.75 1

(21 objects)

D
e
p
t
h
3

0 0.25 0.5 0.75 1

0

20

40

(4 objects)

0 0.25 0.5 0.75 1

(15 objects)

0 0.25 0.5 0.75 1

(40 objects)

0 0.25 0.5 0.75 1

58 94 125

(85 objects)

D
e
p
t
h
4

Fig. 15. Microbenchmarks.

6.3 Microbenchmarks
To compare the performance charateristics of each availability level, we implemented a microbench-

mark that measures the performance of an operation under different levels. We create synthetic

objects structures where objects include references to other objects and we change two dimensions:

branching factor and depth. In the simplest configuration with an object structure of depth 1, we

only have a single root object. A depth of n means that every leaf object is reachable over a path of

length n from the root object. A branching factor ofm means that every (non-leaf) object holds

references to m other replicated objects. The rows represent an increasing depth of the object

structure (from top to bottom) and the columns represent an increasing branching factor (from left

to right). We vary the ratio of Seq and Ev objects between 0 and 100%, choosing the availability

level for the objects in the structure randomly according to their ratio. The setup is an Intel Core

i7-5600U, 2.6–3.2 GHz, 8 GiB.

Figure 15 presents the results for increasing depth (top to bottom) and increasing branching

factor (left to right). The plots show the average time for updating all leaf objects (thereby traversing

the complete object structure accessing every object once) and the 99.9 % confidence intervals for

different ratios of Low objects. After warmup, we run four iterations on three forked JVMs for 10

seconds each and take the average. The experiments show that running time scales linearly in the

number of Low available objects.

7 RELATEDWORK
The trade-off between availability and consistency with transactional guarantees has been the

subject of many studies. We first discuss recent trends in distributed database systems and replicated

datastores. Then we focus on language abstractions to reason about consistency and availability.

7.1 Consistency and Availability
In the design space of availability in distributed systems, authors proposed hierarchical models –

lattices – that account for various combinations of consistency and isolation. For example, Viotti

and Vukolić [37] provide a survey on consistency in non-transactional distributed storage. Adya

et al. [1] present implementation-independent specifications of isolation levels, including existing

ANSI levels.

, Vol. 1, No. 1, Article . Publication date: March 2020.

Rethinking Safe Consistency in Distributed Object-Oriented Programming 25

Recent works study algorithms and techniques for strong consistency and transactional isolation

in (geo-)replicated datastores with acceptable performance, e.g., Google Spanner [13], exploiting the

availability of accurate clocks, and Calvin [36], relying on the deterministic execution of transactions

to reduce overhead. Other databases, e.g., H-Store [35] and ReactDB [32], make distribution – for

its performance effects – explicit in the schema and query language.

Another line of work focuses on data types tailored for weakly consistent models such as eventual

consistency. CRDTs [33] are distributed data types with an API that only allows commutative

operations, ensuring that replicas eventually converge. Cloud types [9] provide eventually consistent

storage and define an abstraction layer over recurring engineering challenges like Web service

implementation, communication protocols, and caching. They are similar to CRDTs, but also

supports non-commutative operations. Zhao and Haller [42] propose a consistency protocol which

combines the performance of mergeable data types like CRDTs, and reliable total order broadcast

for strong consistency. The resulting abstractions provide high availability through mergeable data

types as well as acceptable latency for strong consistency.

The idea of mixing multiple consistency/availability levels within the same system was pioneered

by RedBlue consistency [25]: programmers label operations that do not commute or potentially

violate invariants as strongly consistent and the remaining ones as weakly consistent. The runtime

then adopts different protocols to synchronize replicas. Along the same line, the Olisipo coordi-

nation service [26] provides finer-grained consistency specifications for geo-replicated systems.

For example, it supports synchronizing specific groups of operations with each other, but not

with operations in other groups. Yu and Vahdat [40] propose a continuous consistency model to

dynamically trade consistency for availability where applications specify a maximum deviation

from strong consistency for each replica.

An important research line concerns finding criteria for ensuring that an application exhibits a

certain consistency level. For example, Brutschy et al. [8] provide an analysis for serializability in

distributed applications. SIEVE [24] combines static and dynamic analysis to determine when it

is necessary to use strong consistency to preserve invariants and when it is safe to use a weaker

consistency model. Predictive Treaties [28] relax the synchronization of strong consistent data by

predicting how results of strong operations change over time based on the history of the program.

7.2 Abstractions for Consistency and Availability
Several approaches adopt programming language techniques to support multiple availability levels.

MixT [29] is a C++ DSL for transactions that span multiple datastores each with a different

consistency level. The compiler automatically distributes each transaction across the datastores.

Similar to ConSysT, MixT adopts an information-flow type system to safely mixing multiple consis-

tency models. MixT is a separate domain-specific language for database transactions. Operations

on replicated objects can only be executed inside MixT code. In MixT, only transactions written

in the MixT DSL can manipulate replicated objects. The available operations depend on custom

operations supported by the specific underlying datastore for a specific datatype. In contrast,

ConSysT integrates availability with OO programming and lets developers uniformly operate on

replicated objects. Another crucial semantic difference is that the execution of a MixT transaction

can abort to rollback the associated database transaction. In this case, side effects and changes

to the program state would lead to inconsistencies. ConSysT supports the traditional semantics of

object-oriented languages, without rollbacks.

DCCT is a data-oriented query language that mixes multiple consistency levels [41]. In DCCT,

actions (e.g., queries), access a distributed storage and annotations define the consistency of values.

In contrast to ConSysT, which integrates availability levels into an OO programming model, DCCT

is based on relational queries.

, Vol. 1, No. 1, Article . Publication date: March 2020.

26 M. Köhler, N. Eskandani, P. Weisenburger, A. Margara, and G. Salvaneschi

CAPtain.js [30] is a JavaScript library with two abstract data types, consistents and availables
laying at the opposite extremes in the design space according to the CAP theorem: the former

ensures strong consistency by sacrificing availability, the latter ensures availability, but only

provides eventual consistency. In contrast to ConSysT, which features availability types, in CAPtain.js,
conflicts among consistency levels generate runtime exceptions.

The idea that type safety should imply consistency safety has been introduced by Holt et al. [19]

in the IPA system. Using subtyping, IPA prevents that values with high consistency flow into values

with low consistency, which however, does not rule out control dependencies as ConSysT (and

MixT) do using an information flow type system (Section 3.4). In contrast to ConSysT, which enables

associating availability levels to any (nested) Java object (including those from the standard library),

IPA only supports consistency for predefined ADTs that implement the necessary operations on

the Cassandra backend.

Geo [7] is an actor based framework that implements the virtual actor model [11], i.e., it automates

placement, discovery, recovery, and load-balancing of actors. Instead of associating availability

to data, as ConSysT does, Geo exposes availability levels via different operations. Geo, however,

does not provide any guarantee for operations on multiple actors, while ConSysT supports isolation

for methods that involve several objects. AJ [15] is a concurrent language where object fields are

grouped into sets that must be updated atomically. Code fragments, referred to as units of work are
associated to atomic sets. The compiler automatically adds synchronization operations to preserve

the consistency of the set. The features above result in a consistency model that, similar to ours, is

data centric: update consistency is associated to data sets. Yet, AJ does not target availability in

distributed systems. Correctables [17] are an abstraction for incremental consistency. Correctables

capture successive refinements of the result of an operation on a replicated object: applications

receive both preliminary results (fast but possibly inconsistent) as well as final (consistent) results

that become available later, thus enabling speculative execution. Correctables are complementary

to our approach. They enable computations with multiple consistency levels but do not support

the interaction among levels, as we do. Hercules [23] is a system in which shared data is stored on

a central (replicated) server and clients cache their local copy. Shared data can be accessed either at

the local copy as weak consistent data, or the server as strong consistent data.

7.3 Application-Level Consistency Specification
Consistency can be inferred from user-defined program invariants. Quelea [34] is a declarative

programming model for eventually consistent data stores. It defines a contract language to specify

fine-grained consistency properties of methods and it automatically generates a consistency protocol

to enforce the contract. In Indigo [6], consistency is specified via user-defined conditions on

operations. The system statically checks whether two operations would violate a condition when

executed concurrently and, in case, it introduces coordination to decide a serial execution order.

Similarly, Houshmand and Lesani [20] design a language for replicated objects which lets developers

define conditions on methods. The system uses such conditions to find pairs of methods that are

conflicting when executed concurrently and synthesizes synchronization protocols for them. In

contrast to these approaches, ConSysT does not require programmers to specify application invariants

on methods. Instead, developers define the availability of objects via availability types. We believe

this approach is more intuitive for OO programmers, which think of their programs in terms of

objects rather than functions. Further, ConSysT releases developers from writing potentially complex

invariants on object state. The trade-off is that we can not infer synchronization at the granularity

of methods, i.e., execute two methods in an object that have no conflict without coordination,

whereas ConSysT infers synchronization on the granularity of objects.

, Vol. 1, No. 1, Article . Publication date: March 2020.

Rethinking Safe Consistency in Distributed Object-Oriented Programming 27

7.4 Mergeable Data Types
Certain data types have been tailored for weakly consistent models such as eventual consistency.

CRDTs [33] are distributed data types that are (strong) eventual consistent. To ensure consistency,

CRDTs require either that all operations are commutative (operation-based), or that there is

commutative merge operation (state-based). As state-based CRDTs may require to propagate

potentially large state, Almeida et al. [4] propose delta-state CRDTs that only propagate incremental

state changes. Burckhardt et al. [10] propose a framework to specify the semantics of eventually

consistent replicated data types and to prove the correctness of their implementation. The authors

also develop a notion of optimality for proving lower bounds on the worst-case proportion of

metadata needed to resolve conflicts. Cloud types [9] provide eventually consistent storage and

define an abstraction layer over recurring engineering challenges like the details of Web service

implementation, communication protocols, and caching. Cloud types are similar to CRDTs, but they

also support non-commutative operations when given a merging strategy. Zhao and Haller [42]

combine in a protocol the performance of mergeable data types and reliable total order broadcast

for strong consistency. The resulting abstractions provide both high availability through mergeable

data types and acceptable latency for strong consistency.

Antidote DB [3] is a database that features geo-replication, CRDTs and highly available transac-

tions. Antidote SQL [27], supports consistency annotations specifying how concurrent updates to

a column are synchronized. A no concurrency annotation indicates that objects are synchronized

whenever an update occurs on that column, resembling ConSysT’s Low level, which also does not

allow concurrent updates.

ConSysT’s weak consistency does not use CRDTs. CRDTs restrict the possible operations (com-

mutativity), or restrict the replicated state (mergeable state). ConSysT instead provides consistency

through its middleware without restrictions in the operations or the shared state. This result is

achieved by either immediate synchronization for Low availability, or by agreeing on an operation

order when synchronizing for High availability. CRDTs achieve consistency without additional

synchronization whereas ConSysT allows writing programs without any restriction.

8 CONCLUSION
We presented ConSysT, a language for distributed systems that integrates object-oriented program-

ming and data availability (consistency and isolation) in a coherent design. The ConSysT type system,

featuring availability types, ensures that programs do not incur into errors due to the combination

of incompatible availability levels. We formalize ConSysT with a core calculus and prove the type

system correct. Our evaluation shows that ConSysT performs efficiently and demonstrates the design

benefits of our solution.

REFERENCES
[1] A. Adya, B. Liskov, and P. O’Neil. 2000. Generalized isolation level definitions. In Proceedings of 16th International

Conference on Data Engineering (Cat. No.00CB37073). 67–78. https://doi.org/10.1109/ICDE.2000.839388

[2] Akka. 2009. Akka toolkit for Java and Scala. Retrieved 2019-04-06 from https://akka.io

[3] Deepthi Devaki Akkoorath and Annette Bieniusa. 2016. Antidote: the highly-available geo-replicated database with

strongest guarantees. SyncFree Technology White Paper (2016).
[4] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2018. Delta state replicated data types. J. Parallel and Distrib.

Comput. 111 (2018), 162 – 173. https://doi.org/10.1016/j.jpdc.2017.08.003

[5] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013. Highly Avail-

able Transactions: Virtues and Limitations (Extended Version). (2013). https://doi.org/10.14778/2732232.2732237

arXiv:1302.0309

[6] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça, Mahsa Najafzadeh, and Marc Shapiro.

2015. Putting Consistency Back into Eventual Consistency. In Proceedings of the Tenth European Conference on Computer

, Vol. 1, No. 1, Article . Publication date: March 2020.

https://doi.org/10.1109/ICDE.2000.839388
https://akka.io
https://doi.org/10.1016/j.jpdc.2017.08.003
https://doi.org/10.14778/2732232.2732237
http://arxiv.org/abs/1302.0309

28 M. Köhler, N. Eskandani, P. Weisenburger, A. Margara, and G. Salvaneschi

Systems (EuroSys ’15). ACM, New York, NY, USA, Article 6, 16 pages. https://doi.org/10.1145/2741948.2741972

[7] Philip A. Bernstein, Sebastian Burckhardt, Sergey Bykov, Natacha Crooks, Jose M. Faleiro, Gabriel Kliot, Alok Kumbhare,

Muntasir Raihan Rahman, Vivek Shah, Adriana Szekeres, and Jorgen Thelin. 2017. Geo-distribution of Actor-based

Services. Proc. ACM Program. Lang. 1, OOPSLA, Article 107 (Oct. 2017), 26 pages. https://doi.org/10.1145/3133931

[8] Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin Vechev. 2017. Serializability for eventual consistency:

criterion, analysis, and applications. ACM SIGPLAN Notices 52, 1 (2017), 458–472. https://doi.org/10.1145/3093333.

3009895

[9] Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Benjamin P. Wood. 2012. Cloud Types for Eventual

Consistency. In Proceedings of the 26th European Conference on Object-Oriented Programming (ECOOP’12). Springer-
Verlag, Berlin, Heidelberg, 283–307. https://doi.org/10.1007/978-3-642-31057-7_14

[10] Sebastian Burckhardt, AlexeyGotsman, Hongseok Yang, andMarek Zawirski. 2014. ReplicatedData Types: Specification,

Verification, Optimality. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’14). ACM, New York, NY, USA, 271–284. https://doi.org/10.1145/2535838.2535848

[11] Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, and Jorgen Thelin. 2011. Orleans: Cloud

Computing for Everyone. In Proceedings of the 2Nd ACM Symposium on Cloud Computing (SOCC ’11). ACM, New York,

NY, USA, Article 16, 14 pages. https://doi.org/10.1145/2038916.2038932

[12] Raphaël Collet et al. 2007. The limits of network transparency in a distributed programming language. Ph.D. Dissertation.
[13] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Furman, Sanjay Ghemawat,

Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,

Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Dale Woodford,

Yasushi Saito, Christopher Taylor, Michal Szymaniak, and Ruth Wang. 2012. Spanner: Google’s Globally-Distributed

Database. In OSDI.
[14] Dorothy E. Denning. 1976. A Lattice Model of Secure Information Flow. Commun. ACM 19, 5 (May 1976), 236–243.

https://doi.org/10.1145/360051.360056

[15] Julian Dolby, Christian Hammer, Daniel Marino, Frank Tip, Mandana Vaziri, and Jan Vitek. 2012. A Data-centric

Approach to Synchronization. ACM Trans. Program. Lang. Syst. 34, 1 (May 2012), 4:1–4:48. https://doi.org/10.1145/

2160910.2160913

[16] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. 1976. The Notions of Consistency and Predicate Locks in a

Database System. Commun. ACM 19, 11 (Nov. 1976), 624–633. https://doi.org/10.1145/360363.360369

[17] Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi. 2016. Incremental Consistency Guarantees for

Replicated Objects. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). USENIX
Association, Savannah, GA, 169–184.

[18] Boniface Hicks, Dave King, Patrick McDaniel, and Michael Hicks. 2006. Trusted declassification: High-level policy for

a security-typed language. Proceedings of the 2006 workshop on Programming languages and analysis for security - PLAS
’06 (2006), 65. https://doi.org/10.1145/1134744.1134757

[19] Brandon Holt, James Bornholt, Irene Zhang, Dan Ports, Mark Oskin, and Luis Ceze. 2016. Disciplined Inconsistency

with Consistency Types. In Proceedings of the Seventh ACM Symposium on Cloud Computing - SoCC ’16. ACM Press,

New York, New York, USA, 279–293. https://doi.org/10.1145/2987550.2987559

[20] Farzin Houshmand and Mohsen Lesani. 2019. Hamsaz: Replication Coordination Analysis and Synthesis. Proc. ACM
Program. Lang. 3, POPL, Article 74 (Jan. 2019), 32 pages. https://doi.org/10.1145/3290387

[21] Atsushi Igarashi. 1999. Featherweight Java: A Minimal Core Calculus for Java and GJ. ACM SIGPLAN Notices This ACM
Transactions on Programming Languages and Systems 34, 3 (may 1999), 132–146. https://doi.org/10.1145/503502.503505

[22] Leslie Lamport et al. 2001. Paxos made simple. ACM Sigact News 32, 4 (2001), 18–25.
[23] Niel Lebeck, Jonathan Goldstein, and Irene Zhang. 2019. Hercules: A Multi-View Cache for Real-Time Interactive Apps.

Technical Report.

[24] Cheng Li, João Leitão, Allen Clement, Nuno Preguiça, Rodrigo Rodrigues, and Viktor Vafeiadis. 2014. Automating the

Choice of Consistency Levels in Replicated Systems. In Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference (USENIX ATC’14). USENIX Association, Berkeley, CA, USA, 281–292. http://dl.acm.org/citation.

cfm?id=2643634.2643664

[25] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo Rodrigues. 2012. Making

Geo-replicated Systems Fast As Possible, Consistent when Necessary. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation (OSDI’12). USENIX Association, Berkeley, CA, USA, 265–278. http:

//dl.acm.org/citation.cfm?id=2387880.2387906

[26] Cheng Li, Nuno Preguiça, and Rodrigo Rodrigues. 2018. Fine-grained consistency for geo-replicated systems. In

2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA, 359–372. https:

//www.usenix.org/conference/atc18/presentation/li-cheng

[27] Pedro S. Lopes. 2018. Antidote SQL: SQL for Weakly Consistent Databases. http://hdl.handle.net/10362/68859

, Vol. 1, No. 1, Article . Publication date: March 2020.

https://doi.org/10.1145/2741948.2741972
https://doi.org/10.1145/3133931
https://doi.org/10.1145/3093333.3009895
https://doi.org/10.1145/3093333.3009895
https://doi.org/10.1007/978-3-642-31057-7_14
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1145/2038916.2038932
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/2160910.2160913
https://doi.org/10.1145/2160910.2160913
https://doi.org/10.1145/360363.360369
https://doi.org/10.1145/1134744.1134757
https://doi.org/10.1145/2987550.2987559
https://doi.org/10.1145/3290387
https://doi.org/10.1145/503502.503505
http://dl.acm.org/citation.cfm?id=2643634.2643664
http://dl.acm.org/citation.cfm?id=2643634.2643664
http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dl.acm.org/citation.cfm?id=2387880.2387906
https://www.usenix.org/conference/atc18/presentation/li-cheng
https://www.usenix.org/conference/atc18/presentation/li-cheng
http://hdl.handle.net/10362/68859

Rethinking Safe Consistency in Distributed Object-Oriented Programming 29

[28] Tom Magrino, Jed Liu, Nate Foster, Johannes Gehrke, and Andrew C. Myers. 2019. Efficient, Consistent Distributed

Computation with Predictive Treaties. In Proceedings of the Fourteenth EuroSys Conference 2019 (EuroSys ’19). ACM,

New York, NY, USA, Article 36, 16 pages. https://doi.org/10.1145/3302424.3303987

[29] MatthewMilano and Andrew C.Myers. 2018. MixT: A Language for Mixing Consistency in Geodistributed Transactions.

In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2018).
ACM, New York, NY, USA, 226–241. https://doi.org/10.1145/3192366.3192375

[30] Florian Myter, Christophe Scholliers, and Wolfgang De Meuter. 2018. A CAPable Distributed Programming Model.

In Proceedings of the 2018 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (Onward! 2018). ACM, New York, NY, USA, 88–98. https://doi.org/10.1145/3276954.3276957

[31] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa, Jr., Jeff H. Perkins, and Michael D. Ernst. 2008. Practical Pluggable

Types for Java. In Proceedings of the 2008 International Symposium on Software Testing and Analysis (ISSTA ’08). ACM,

New York, NY, USA, 201–212. https://doi.org/10.1145/1390630.1390656

[32] Vivek Shah and Marcos Antonio Vaz Salles. 2018. Reactors: A Case for Predictable, Virtualized Actor Database Systems.

In Proceedings of the 2018 International Conference on Management of Data (SIGMOD ’18). ACM, 259–274.

[33] Marc Shapiro, Nuno Pregui, Carlos Baquero, and Marek Zawirski. 2011. A Comprehensive Study of Convergent and

Commutative Replicated Data Types. (2011).

[34] KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015. Declarative programming over eventually

consistent data stores. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation - PLDI 2015, Vol. 50. ACM Press, New York, New York, USA, 413–424. https://doi.org/10.1145/2737924.

2737981

[35] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil Hachem, and Pat Helland. 2007.

The End of an Architectural Era: (It’s Time for a Complete Rewrite). In Proceedings of the International Conference on
Very Large Data Bases (VLDB ’07). VLDB Endowment, 1150–1160.

[36] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, and Daniel J. Abadi. 2012. Calvin:

Fast Distributed Transactions for Partitioned Database Systems. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’12). ACM, New York, NY, USA, 1–12. https://doi.org/10.1145/2213836.

2213838

[37] Paolo Viotti and Marko Vukolić. 2015. Consistency in Non-Transactional Distributed Storage Systems. Comput. Surveys
49, 1 (jun 2015), 1–34. https://doi.org/10.1145/2926965 arXiv:1512.00168

[38] Werner Vogels. 2009. Eventually Consistent. Commun. ACM 52, 1 (2009), 40–44.

[39] A.K. Wright and M. Felleisen. 1994. A Syntactic Approach to Type Soundness. Information and Computation 115, 1

(1994).

[40] Haifeng Yu and Amin Vahdat. 2001. The Costs and Limits of Availability for Replicated Services. In Proceedings
of the Eighteenth ACM Symposium on Operating Systems Principles (SOSP ’01). ACM, New York, NY, USA, 29–42.

https://doi.org/10.1145/502034.502038

[41] Nosheen Zaza and Nathaniel Nystrom. 2016. Data-centric Consistency Policies: A Programming Model for Distributed

Applications with Tunable Consistency. First Workshop on Programming Models and Languages for Distributed
Computing on - PMLDC ’16 (2016), 2–5. https://doi.org/10.1145/2957319.2957377

[42] Xin Zhao and Philipp Haller. 2018. Observable Atomic Consistency for CvRDTs. In Proceedings of the 8th ACM SIGPLAN
International Workshop on Programming Based on Actors, Agents, and Decentralized Control (AGERE 2018). ACM, New

York, NY, USA, 23–32. https://doi.org/10.1145/3281366.3281372

, Vol. 1, No. 1, Article . Publication date: March 2020.

https://doi.org/10.1145/3302424.3303987
https://doi.org/10.1145/3192366.3192375
https://doi.org/10.1145/3276954.3276957
https://doi.org/10.1145/1390630.1390656
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/2926965
http://arxiv.org/abs/1512.00168
https://doi.org/10.1145/502034.502038
https://doi.org/10.1145/2957319.2957377
https://doi.org/10.1145/3281366.3281372

	Abstract
	1 Introduction
	2 Consistency and Isolation
	2.1 Issues with Replicated Objects
	2.2 Executive Summary

	3 ConSysT Replicated Objects
	3.1 System Model
	3.2 Replicated Objects
	3.3 Availability of Replicated Objects
	3.4 Availability Type System
	3.5 Handling Failures

	4 Formalization
	4.1 Syntax
	4.2 Type system
	4.3 Store model
	4.4 Dynamic semantics
	4.5 Properties

	5 Implementation
	6 Evaluation
	6.1 Performance
	6.2 Application Design
	6.3 Microbenchmarks

	7 Related Work
	7.1 Consistency and Availability
	7.2 Abstractions for Consistency and Availability
	7.3 Application-Level Consistency Specification
	7.4 Mergeable Data Types

	8 Conclusion
	References

