
ConSysT: Tunable, Safe Consistency Meets
Object-Oriented Programming

Mirko Köhler
Technische Universität Darmstadt

Germany
koehler@cs.tu-darmstadt.de

Nafise Eskandani Masoule
Technische Universität Darmstadt

Germany
n.eskandani@cs.tu-darmstadt.de

Alessandro Margara
Politecnico di Milano

Italy
alessandro.margara@polimi.it

Guido Salvaneschi
Universiät St. Gallen

Switzerland
guido.salvaneschi@unisg.ch

Abstract
Data replication is essential in scenarios like geo-distributed
datacenters, but poses challenges for data consistency. Devel-
opers adopt Strong consistency at the cost of performance or
embrace Weak consistency and face a higher programming
complexity. We argue that languages should associate con-
sistency to data types. We present ConSysT, a programming
language and middleware that provides abstractions to spec-
ify consistency types, enabling mixing different consistency
levels in the same application. Such mechanism is fully inte-
grated with object-oriented programming and type system
guarantees that different levels can only be mixed correctly.

CCS Concepts: • Computing methodologies → Distri-
buted programming languages.

Keywords: replication, consistency, type systems, Java
ACM Reference Format:
Mirko Köhler, Nafise Eskandani Masoule, Alessandro Margara,
and Guido Salvaneschi. 2020. ConSysT: Tunable, Safe Consistency
Meets Object-Oriented Programming. In Proceedings of the 22th
ACM SIGPLAN International Workshop on Formal Techniques for
Java-Like Programs (FTfJP ’20), July 23, 2020, Virtual, USA. ACM,
NewYork, NY, USA, 3 pages. https://doi.org/10.1145/3427761.3428346

1 Introduction
In scenarios like distributed datacenters, data replication is
critical to achieve scalability, low latency and fault tolerance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
FTfJP ’20, July 23, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8186-4/20/07. . . $15.00
https://doi.org/10.1145/3427761.3428346

Keeping replicas consistent in the presence of data modifica-
tions poses a challenge to the underlying system and develop-
ers. Recently, many consistency models have been proposed
each having their own trade-offs between consistency and
availability. For example, Strong consistency models, such
as Sequential Consistency, do not allow concurrent modi-
fications. While Strong consistency reduces programming
complexity, it also reduces availability as immediate coor-
dination is required. On the other hand, Weak consistency
models defer coordination between replicas, which increases
availability, but also complicates reasoning about programs
as data can be temporarily inconsistent. As there is no one-
size-fits-all solution, the choice of a consistency model for
an application becomes complex. Weak consistency boosts
availability, but Strong consistency is better when correct-
ness is at risk. To make things worse, applications often
require different consistency models, e.g., payment requires
Strong consistency, whereas Weak consistency suffices for
instant messaging. This is not an easy feat as developers
have to (a) know the consistency models to infer the guaran-
tees, (b) ensure that data with different consistency models is
mixed correctly, and (c) reason about concurrency when mix-
ing consistencies. We propose ConSysT, a language featuring
fine-grained, data-centric specification of consistency levels.
The consistency of an application is tuned by changing con-
sistency levels in the program. ConSysT features a static type
system to ensure that data with different consistency levels
mix safely. It supports (weak) transactions and is integrated
into object-oriented programming.

2 Overview
In this section, we introduces ConSysT’s core concepts – dis-
tribution through replication, consistency, and correctness.

Distribution. In ConSysT, programs are divided into (log-
ically) single-threaded processes running in parallel. Repli-
cated data is modelled as replicated objects and each process
holds its own local copy of an object. Distributed operations
are performed by calling methods on replicated objects. Fig-
ure 1 shows how to replicate a counter in ConSysT. We start

https://doi.org/10.1145/3427761.3428346
https://doi.org/10.1145/3427761.3428346


FTfJP ’20, July 23, 2020, Virtual, USA Mirko Köhler, Nafise Eskandani Masoule, Alessandro Margara, and Guido Salvaneschi

1 class Counter {

2 int i;

3 Counter(int i) { this.i = i; }

4 void inc() { i = i + 1; } }

5 transaction (() -> {

6 Ref <@Sequential Counter > counter =

7 replicate("id",Sequential ,Counter.class ,0);

8 counter.ref().inc(); });

Figure 1. Running example.
Expr ∋ e ::= x | Ref@ℓ(ρ)

Computation ∋ c ::= skip | let x B tx(t ) in c | return e | ...

Transaction ∋ t ::= let x B replicate(ρ , ℓ,C , e) in t | t ; t
| let x B e .m(e) in t | return e | ...

Program ∋ P ::= c1, ..., cn
D ::= class C1 extends C2 {F ; M }

ConsLevel ∋ ℓ ::= Sequential | ...
ConsType ∋ τ ::= C@ℓ

Figure 2. Syntax of the core calculus.

a transaction (Line 5), then we create the replicated Counter
by using replicate (Line 7), which returns a Ref to the repli-
cated object. Names, here "id", are used by other processes
to refer to the object. Operations are performed using ref-
erences on references. Operations are prefixed with ref to
make remote accesses explicit. We perform the operation
inc by calling the respective method (Line 8).

Consistency. How the operation is executed depends on
the consistency level of the object. The level describes the
consistency model – such as sequential, or causal consis-
tency. In ConSysT, the developer has fine-grained control
over the consistency of data, as every replicated object de-
fines its own consistency level. In the example, we create a
replicated Counterwith level Sequential (Line 7). Operations
performed on a Sequential replicated object are propagated
using the sequential consistency model. Fields of an object
have the same level as the object itself. Thus, ConSysT enables
mixing replicated data in two ways: (a) an operation can con-
tain objects with different levels, or (b) replicated objects can
be nested, i.e., an object can have a field that is a reference
to another replicated object with its own consistency level.

Language. We formalize our language with the syntax
outlined in Figure 2. Programs P consist of processes cn ,
where each process executes transactions t on a replicated
store. Classes andmethods are based on Featherweight Java [3].
ConSysT adopts consistency types τ to enable static reasoning
about consistency levels. For example, the consistent level
appears in the type of the replicated Counter in its type as
@Sequential (Line 6 of Figure 1).

We define a replicated store model, where replicas have
a transaction local state δ that is merged into a global store
∆ [4]. The operational semantics defines transitions for trans-
actions t with variable environment E: ⟨⟨t, E,∆, δ ,κ⊤⟩⟩ ↠
⟨⟨t ′, E ′,∆′, δ ′,κ ′

⊤⟩⟩ . We use continuations κ⊤ to model wait-
ing for concurrent transactions. Figure 3 shows the rule for
replicate. The rule evaluates expressionsv and creates a new

E ⊢ e ⇓ v
o = Cℓ (v) δ ′ = δ · (ρ 7→ o) E′ = E · (x 7→ Ref@ℓ(ρ))

⟨⟨let x B replicate(ρ , ℓ, C, e) in t , E , ∆, δ , κ⊤ ⟩⟩
↠ ⟨⟨t , E′, ∆, δ ′, κ⊤ ⟩⟩

Figure 3. Example transition rule.

object o which is stored in the local store δ . The local store
is written to the global store ∆ by the rule for transactions
(omitted for brevity).

Correctness. The language supports developers to mix
consistency levels correctly. In ConSysT, we formalize an
information-flow type system for consistency types to en-
sure that Strong objects do not depend onWeak objects. Such
a flow can degrade consistency [6]. The type system is para-
metric in the concrete consistency levels: Levels are ordered
in a lattice [1, 9] that defines the subtyping relation for con-
sistency types. We prove that in well-typed programs, Strong
values cannot be affected by Weak values (non-interference)
and that stores can only differ in consistency levels that are
weaker than a given level ℓ, i.e., inconsistencies in stores
can only appear in weaker consistent objects. We define two
stores δ1 and δ2 to be indistinguishable up to a consistency
level ℓ, when all objects in the store with at least the level
ℓ are equivalent. The non-interference property then states
that two stores that are indistinguishable before the exe-
cution of a well-typed program are indistinguishable after
the execution of the program, giving us the guarantee that
inconsistencies only appear in weaker levels.

3 Related Work
Mixing consistency has been tackled in several works. Holt et
al. [2] use types and type safety to imply consistency safety.
Their type system does not consider control dependencies.
MixT [6] is a DSL for transactions over multiple datastores
with different consistency levels. A type system enforces
correct mixing of levels. In contrast, ConSysT integrates con-
sistency levels into an object-oriented programming model
and does not assume different semantics for datastores. In-
stead of using consistency levels on data, another approach
is to annotate operations. RedBlue Consistency [5] defines
consistency levels red (Strong) and blue (Weak) for oper-
ations. Red operations can violate invariants if executed
concurrently. In Quelea [8] developers define invariants on
functions which guarantee correct ordering of operations.
Gallifrey [7] is a language for replicated objects where re-
strictions are defined as conditions on operations. Instead,
in ConSysT, the data-based approach alleviates the definition
of conditions.

Acknowledgments
This work has been supported by the LOEWE centre emer-
genCITY and by theGerman Reasearch Foundation (DFG), by
the DFG projects SA 2918/2-1 and SA 2918/3-1, and by the Na-
tional Research Center for Applied Cybersecurity ATHENE.



ConSysT: Tunable, Safe Consistency Meets Object-Oriented Programming FTfJP ’20, July 23, 2020, Virtual, USA

References
[1] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Heller-

stein, and Ion Stoica. 2013. Highly Available Transactions: Virtues and
Limitations. PVLDB.

[2] Brandon Holt, James Bornholt, Irene Zhang, Dan Ports, Mark Oskin,
and Luis Ceze. 2016. Disciplined Inconsistency with Consistency Types
(SoCC ’16). ACM, 15.

[3] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. 1999. Feather-
weight Java: A Minimal Core Calculus for Java and GJ. In Proceed-
ings of the 14th ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA ’99). As-
sociation for Computing Machinery, New York, NY, USA, 132–146.
https://doi.org/10.1145/320384.320395

[4] Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagan-
nathan. 2017. Alone Together: Compositional Reasoning and Inference

for Weak Isolation. Proc. ACM Program. Lang. 2 (2017), 27:1–27:34.
[5] Cheng Yen Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno M.

Preguiça, and Rodrigo Rodrigues. 2012. Making Geo-Replicated Systems
Fast as Possible, Consistent when Necessary (OSDI ’12). USENIX.

[6] Matthew Milano and Andrew C. Myers. 2018. MixT: A Language for
Mixing Consistency in Geodistributed Transactions (PLDI ’18). ACM.

[7] Matthew Milano, Rolph Recto, Tom Magrino, and Andrew C. Myers.
2019. A Tour of Gallifrey, a Language for Geodistributed Programming
(SNAPL ’19). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[8] KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015.
Declarative Programming over Eventually Consistent Data Stores (PLDI
’15). ACM.

[9] Paolo Viotti and Marko Vukolić. 2016. Consistency in Non-
Transactional Distributed Storage Systems. CSUR (July 2016).

https://doi.org/10.1145/320384.320395

	Abstract
	1 Introduction
	2 Overview
	3 Related Work
	Acknowledgments
	References

